Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

3 X X + Tan X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{3^x}{x + \tan x}\] 

Advertisement Remove all ads

Solution

\[\text{ Let } u = 3^x ; v = x + \tan x\]
\[\text{ Then }, u' = 3^x \log 3; v' = 1 + \sec^2 x\]
\[\text{ By quotient rule, we have }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{3^x}{x + \tan x} \right) = \frac{\left( x + \tan x \right) 3^x \log 3 - 3^x \left( 1 + \sec^2 x \right)}{\left( x + \tan x \right)^2}\]
\[ = \frac{3^x \left[ \left( x + \tan x \right) \log 3 - \left( 1 + \sec^2 x \right) \right]}{\left( x + \tan x \right)^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 19 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×