Advertisement Remove all ads

∫ √ 3 − X 2 D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int\sqrt{3 - x^2} \text{ dx}\]
Advertisement Remove all ads

Solution

\[\text{ Let I } = \int\sqrt{3 - x^2}\text{ dx}\]
\[ = \int\sqrt{\left( \sqrt{3} \right)^2 - x^2}\text{ dx} \]
\[ = \frac{x}{2}\sqrt{\left( \sqrt{3} \right)^2 - x^2} + \frac{\left( \sqrt{3} \right)^2}{2} \sin^{- 1} \left( \frac{x}{\sqrt{3}} \right) + C\]
\[ = \frac{x}{2} \sqrt{3 - x^2} + \frac{3}{2} \sin^{- 1} \left( \frac{x}{\sqrt{3}} \right) + C\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Q 16 | Page 155

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×