Karnataka Board PUCPUC Science 2nd PUC Class 12

∫ √ 3 + 2 X − X 2 D X - Mathematics

Advertisements
Advertisements
Sum
\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]
Advertisements

Solution

\[\int \sqrt{3 + 2x - x^2} \text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x \right)}\text{ dx}\]
\[ = \int \sqrt{3 - \left( x^2 - 2x + 1 - 1 \right)}\text{ dx}\]
\[ = \int \sqrt{4 - \left( x - 1 \right)^2}\text{ dx}\]
\[ = \int \sqrt{2^2 - \left( x - 1 \right)^2} \text{ dx} \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin }^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{x - 1}{2} \right) \sqrt{2^2 - \left( x - 1 \right)^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]
\[ = \frac{x - 1}{2}\sqrt{3 + 2x - x^2} + \sin^{- 1} \left( \frac{x - 1}{2} \right) + C\]

  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 1 | Page 154

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions in `1/(1 - tan x)`


Choose the correct answer `int (dx)/(sin^2 x cos^2 x)` equals

(A) tan x + cot x + C

(B) tan x – cot x + C

(C) tan x cot x + C

(D) tan x – cot 2x + C


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int 1/("x" ("x - 1"))` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cot^2x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int 1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications



      Forgot password?
Use app×