Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

2 X Cot X √ X - Mathematics

\[\frac{2^x \cot x}{\sqrt{x}}\] 

Advertisement Remove all ads

Solution

\[\frac{2^x \cot x}{\sqrt{x}} = 2^x \cot x \left( x^\frac{- 1}{2} \right)\]
\[\text{ Let } u = 2^x ; v = \cot x; w = x^\frac{- 1}{2} \]
\[\text{ Then }, u' = 2^x \log 2; v' = - {cosec}^2 x; w' = \frac{- 1}{2} x^\frac{- 3}{2} \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left[ 2^x \cot x \left( x^\frac{- 1}{2} \right) \right] = 2^x \log 2 . \cot x . x^\frac{- 1}{2} + 2^x \left( - {cosec}^2 x \right) x^\frac{- 1}{2} + 2^x \cot x\left( \frac{- 1}{2} x^\frac{- 3}{2} \right)\]
\[ = 2^x \log 2 . \cot x . \frac{1}{\sqrt{x}} + 2^x \left( - {cosec}^2 x \right)\frac{1}{\sqrt{x}} + 2^x \cot x\left( \frac{- 1}{2x\sqrt{x}} \right)\]
\[ = \frac{2^x}{\sqrt{x}}\left( \log 2 . \cot x - {cosec}^2 x - \frac{\cot x}{2x} \right)\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.4 | Q 8 | Page 39
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×