Advertisement Remove all ads

2 X − 1 X 2 + 1 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{2x - 1}{x^2 + 1}\] 

Advertisement Remove all ads

Solution

\[\text{ Let u } = 2x - 1; v = x^2 + 1; \]
\[\text{ Then }, u' = 2; v' = 2x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2x - 1}{x^2 + 1} \right) = \frac{\left( x^2 + 1 \right)2 - \left( 2x - 1 \right)2x}{( x^2 + 1 )^2}\]
\[ = \frac{2 x^2 + 2 - 4 x^2 + 2x}{( x^2 + 1 )^2}\]
\[ = \frac{- 2 x^2 + 2x + 2}{( x^2 + 1 )^2}\]
\[ = \frac{2\left( 1 + x - x^2 \right)}{( x^2 + 1 )^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 2 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×