# Π / 2 ∫ 0 Sin 2 X ( 1 + Cos X ) 2 D X - Mathematics

Sum

$\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx$

#### Solution

$\int_0^\frac{\pi}{2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} d x$

$= \int_0^\frac{\pi}{2} \frac{1 - \cos^2 x}{\left( 1 + \cos x \right)^2} d x$

$= \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2} d x$

$= \int_0^\frac{\pi}{2} \frac{1 - \cos x}{1 + \cos x} d x$

$= \int_0^\frac{\pi}{2} \frac{1 - \cos x - 1 + 1}{\left( 1 + \cos x \right)} d x$

$= \int_0^\frac{\pi}{2} \frac{2 - \left( 1 + \cos x \right)}{\left( 1 + \cos x \right)} d x$

$= \int_0^\frac{\pi}{2} \frac{2}{1 + \cos x}dx - \int_0^\frac{\pi}{2} dx$

$= \int_0^\frac{\pi}{2} \frac{2\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx - \int_0^\frac{\pi}{2} dx$

$= 2 \int_0^\frac{\pi}{2} \frac{1 - \cos x}{\sin^2 x}dx - \left[ x \right]_0^\frac{\pi}{2}$

$= 2 \int_0^\frac{\pi}{2} \left( \ cosec^2 x - \ cosec x\ cotx \right) dx - \left[ x \right]_0^\frac{\pi}{2}$

$= 2 \left[ - cotx + \ cosec x \right]_0^\frac{\pi}{2} - \left[ x \right]_0^\frac{\pi}{2}$

$= 2 - \frac{\pi}{2}$

Concept: Definite Integrals Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 20 Definite Integrals
Revision Exercise | Q 11 | Page 121