ICSE Class 10CISCE
Share
Notifications

View all notifications

1f (7m +Bn)(7p-bq) = (7m-bn)(7p+Bq), Then Prove that M: N = P: - ICSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q 

Solution

(7m +8n)(7p - 8q) = (7m - 8n)c

`=> (7"m" +8"n")/(7"m" - 8"n") = (7"p" + 8"q")/(7"p" - 8"q")`

Applying componendo and dividendo, 

`(7"m" + 8"n" + 7"m" - 8"n")/(7"m" + 8"m" - 7"m" + 8"n") = (7"p" + 8"q" + 7"m" - 8"q")/(7"m" + 8"q" - 7"m" + 8"q")`

`=> (14 "m")/(16 "n") = (14"p")/(16"q")`

Dividing both sides by `14/16`

`"m"/"n" = "p"/"q"`

Hence. m:n = p : q . 

  Is there an error in this question or solution?

APPEARS IN

 Frank Solution for Frank Class 10 Mathematics Part 2 (2016 to Current)
Chapter 9: Ratio and Proportion
Exercise 9.3 | Q: 3

Video TutorialsVIEW ALL [1]

Solution 1f (7m +Bn)(7p-bq) = (7m-bn)(7p+Bq), Then Prove that M: N = P: Concept: Componendo and Dividendo Properties.
S
View in app×