Advertisement Remove all ads

10 X Sin X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{{10}^x}{\sin x}\] 

Advertisement Remove all ads

Solution

\[\text{ Let } u = {10}^x ; v = \sin x\]
\[\text{ Then }, u' = {10}^x \log 10; v' = \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{{10}^x}{\sin x} \right) = \frac{\sin x {10}^x \log 10 - {10}^x \cos x}{\sin^2 x}\]
\[ = \frac{\sin x {10}^x \log 10}{\sin^2 x} - \frac{{10}^x \cos x}{\sin^2 x}\]
\[ = {10}^x \log 10 \cos ec x - {10}^x cosec x \cot x\]
\[ = {10}^x cosec x\left( \log 10 - \cot x \right)\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 17 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×