Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

1 a X 2 + B X + C - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{1}{a x^2 + bx + c}\] 

Advertisement Remove all ads

Solution

\[\text{ Let } u = 1; v = a x^2 + bx + c\]
\[\text{ Then }, u' = 0; v' = 2ax + b\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right) = \frac{\left( a x^2 + bx + c \right)0 - 1\left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 30 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×