Advertisement Remove all ads

1 + Log X 1 − Log X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{1 + \log x}{1 - \log x}\] 

Advertisement Remove all ads

Solution

\[\text{ Let } u = 1 + \log x; v = 1 - \log x\]
\[\text{ Then }, u' = \frac{1}{x}; v' = \frac{- 1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + \log x}{1 - \log x} \right) = \frac{\left( 1 - \log x \right)\left( \frac{1}{x} \right) - \left( 1 + \log x \right)\left( \frac{- 1}{x} \right)}{\left( 1 - \log x \right)^2}\]
\[ = \frac{1 - \log x + 1 + \log x}{x \left( 1 - \log x \right)^2}\]
\[ = \frac{2}{x \left( 1 - \log x \right)^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 20 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×