Advertisement Remove all ads

∫ 1 Cos 2 X ( 1 − Tan X ) 2 D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
Advertisement Remove all ads

Solution

\[\text{Let  I } = \int\frac{1}{\cos^2 x \left( 1 - \tan x \right)^2}dx\]
\[ = \int\frac{\sec^2 x}{\left( 1 - \tan x \right)^2} \text{dx} \]
\[ = \int\frac{\sec^2 \text{x dx}}{\left( 1 - \tan x \right)^2}\]

Let 1-  tan x = t

\[- \sec^2 \text{x dx} = dt\]
\[ \Rightarrow \sec^2\text{ x dx} = - dt\]
\[\therefore I = \int\frac{- dt}{t^2}\]
\[ = - \int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{t} + C\]
\[ = \frac{1}{1 - \tan x} + C\]
Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.3 | Q 19 | Page 24

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×