# ∫ 1 4 Sin 2 X + 4 Sin X Cos X + 5 Cos 2 X Dx - Mathematics

Sum

$\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }$

#### Solution

$\text{ Let I } = \int\frac{1}{4 \sin^2 x + 4 \sin x \cdot \cos x + 5 \cos^2 x}dx$

Dividing numerator and denominator by cos2x we get

$I = \int\frac{\sec^2 x}{4 \tan^2 x + 4 \tan x + 5}dx$

$\text{ Putting tan x = t}$

$\Rightarrow \text{ sec}^2 \text{ x dx = dt }$

$\therefore I = \int\frac{dt}{4 t^2 + 4t + 5}$

$= \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{5}{4}}$

$= \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{5}{4}}$

$= \frac{1}{4}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + 1^2}$

$= \frac{1}{4} \times \tan^{- 1} \left( t + \frac{1}{2} \right) + C.......... \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]$

$= \frac{1}{4} \tan^{- 1} \left( \frac{2t + 1}{2} \right) + C$

$= \frac{1}{4} \tan^{- 1} \left( \frac{2 \tan x + 1}{2} \right) + C...........\left[ \because t = \tan x \right]$

$= \frac{1}{4} \tan^{- 1} \left( \tan x + \frac{1}{2} \right) + C$

Concept: Indefinite Integral Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Revision Excercise | Q 57 | Page 204