Advertisement Remove all ads

1 + 3 X 1 − 3 X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{1 + 3^x}{1 - 3^x}\]

Advertisement Remove all ads

Solution

\[\text{ Let } u = 1 + 3^x ; v = 1 - 3^x \]
\[\text{ Then }, u' = 3^x \log 3; v' = - 3^x \log 3\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + 3^x}{1 - 3^x} \right) = \frac{\left( 1 - 3^x \right) 3^x \log 3 - \left( 1 + 3^x \right)\left( - 3^x \log 3 \right)}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{3^x \log 3 - 3^{2x} \log 3 + 3^x \log 3 + 3^{2x} \log 3}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{2 . 3^x \log 3}{\left( 1 - 3^x \right)^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 18 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×