Advertisement Remove all ads

∫ 1 1 − Sin X D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int\frac{1}{1 - \sin x} dx\]
Advertisement Remove all ads

Solution

\[\int\frac{dx}{1 - \sin x}\]
\[ = \int\frac{\left( 1 + \sin x \right)}{\left( 1 - \sin x \right) \times \left( 1 + \sin x \right)}dx\]
\[ = \int\left( \frac{1 + \sin x}{1 - \sin^2 x} \right)dx\]
\[ = \int\left( \frac{1 + \sin x}{\cos^2 x} \right)dx\]
\[ = \int\left( \frac{1}{\cos^2 x} + \frac{\sin x}{\cos x} \times \frac{1}{\cos x} \right)dx\]
\[ = \int\left( \sec^2 x + \sec x \tan x \right)dx\]
\[ = \tan  x + \sec x + C\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 30 | Page 15

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×