Advertisement Remove all ads

1 ∫ 0 1 − X 1 + X D X - Mathematics

Sum

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

Advertisement Remove all ads

Solution

\[\int_0^1 \frac{1 - x}{1 + x} dx\]

\[ = \int_0^1 \frac{1 - x - 1 + 1}{1 + x} d x\]

\[ = \int_0^1 \frac{2 - \left( x + 1 \right)}{1 + x} d x\]

\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 \frac{1 + x}{1 + x}dx\]

\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 dx\]

\[ = 2 \left[ \log\left( 1 + x \right) \right]_0^1 - \left[ x \right]_0^1 \]

\[ = 2\log2 - 1\]

Concept: Definite Integrals Problems
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 20 Definite Integrals
Revision Exercise | Q 9 | Page 121
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×