Advertisement Remove all ads

Variance of a Random Variable

Advertisement Remove all ads

Topics

definition

Let X be a random variable whose possible values `x_1, x_2,...,x_n` occur with probabilities `p(x_1), p(x_2),..., p(x_n)` respectively.
Let µ = E (X) be the mean of X. The variance of X, denoted by Var (X) or `σ_x^2`  is  defined as 
`σ_x^2 = Var (X) = sum_(i=1)^n (x_i - mu )^2 p (x_i)`
or equivalently `σ_x^2` = `E(X - mu)^ 2 `
The non-negative number 

`σ_x = sqrt (Var (X)) = sqrt (sum_(i=1)^n (x_i - mu)^2 p (x_i))`

is called the standard deviation of the  random variable X. 
Another formula to find the variance of a random variable. We know that, 

Var (X) = `sum_(i=1)^n (x_i - mu )^2 p(x_i)`

`= sum_(i=1) ^n (x_i^2 + mu ^2 - 2 mu x_i ) p(x_i)`

`= sum_(i=1)^n  x_i^2 p(x_i) + sum_(i =1)^n mu^2 p(x_i) - sum_(i=1)^n  2 mu x_i p(x_i)`

`= sum_(i =1)^n  x_i^2 p (x_i) + mu ^2 sum_(i=1)^n p(x_i) - 2 mu  sum_(i=1)^n  x_i p(x_i)`

`= sum_(i=1)^n x_i^2 p (x_i) + mu ^2 - 2 mu^2 [ "since" sum_(i = 1)^n p(x_i) = 1 and mu = sum_(i=1)^n x_i p(x_i)]`

`= sum_(i=1)^n  x_i^2 p(x_i) - mu^2`

or Var (X) = `sum_(i=1)^n  x_i^2 p(x_i) - (sum _(i=1)^n  x_i p(x_i))^2`

`or Var (X) = E(x^2) - [E(X)] ^2 , "where"  E(X^2) = sum_(i=1)^n  x_i^2 p(x_i)`

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×