#### Topics

##### Sets and Functions

##### Trigonometric Functions

- Concept of Angle
- Introduction of Trigonometric Functions
- Signs of Trigonometric Functions
- Domain and Range of Trigonometric Functions
- Trigonometric Functions of Sum and Difference of Two Angles
- Trigonometric Equations
- Truth of the Identity
- Negative Function Or Trigonometric Functions of Negative Angles
- 90 Degree Plusminus X Function
- Conversion from One Measure to Another
- 180 Degree Plusminus X Function
- 2X Function
- 3X Function
- Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications
- Graphs of Trigonometric Functions
- Transformation Formulae
- Values of Trigonometric Functions at Multiples and Submultiples of an Angle
- Sine and Cosine Formulae and Their Applications

##### Relations and Functions

- Cartesian Product of Sets
- Relation
- Concept of Functions
- Some Functions and Their Graphs
- Algebra of Real Functions
- Ordered Pairs
- Equality of Ordered Pairs
- Pictorial Diagrams
- Graph of Function
- Pictorial Representation of a Function
- Exponential Function
- Logarithmic Functions
- Brief Review of Cartesian System of Rectanglar Co-ordinates

##### Sets

- Sets and Their Representations
- The Empty Set
- Finite and Infinite Sets
- Equal Sets
- Subsets
- Power Set
- Universal Set
- Venn Diagrams
- Intrdouction of Operations on Sets
- Union Set
- Intersection of Sets
- Difference of Sets
- Complement of a Set
- Practical Problems on Union and Intersection of Two Sets
- Proper and Improper Subset
- Open and Close Intervals
- Operation on Set - Disjoint Sets
- Element Count Set

##### Algebra

##### Binomial Theorem

##### Sequence and Series

##### Linear Inequalities

##### Complex Numbers and Quadratic Equations

##### Permutations and Combinations

- Fundamental Principle of Counting
- Concept of Permutations
- Concept of Combinations
- Introduction of Permutations and Combinations
- Permutation Formula to Rescue and Type of Permutation
- Smaller Set from Bigger Set
- Derivation of Formulae and Their Connections
- Simple Applications of Permutations and Combinations
- Factorial N (N!) Permutations and Combinations

##### Principle of Mathematical Induction

##### Coordinate Geometry

##### Straight Lines

##### Introduction to Three-dimensional Geometry

##### Conic Sections

- Sections of a Cone
- Concept of Circle
- Introduction of Parabola
- Standard Equations of Parabola
- Latus Rectum
- Introduction of Ellipse
- Relationship Between Semi-major Axis, Semi-minor Axis and the Distance of the Focus from the Centre of the Ellipse
- Special Cases of an Ellipse
- Eccentricity
- Standard Equations of an Ellipse
- Latus Rectum
- Introduction of Hyperbola
- Eccentricity
- Standard Equation of Hyperbola
- Latus Rectum
- Standard Equation of a Circle

##### Calculus

##### Limits and Derivatives

- Intuitive Idea of Derivatives
- Introduction of Limits
- Introduction to Calculus
- Algebra of Limits
- Limits of Polynomials and Rational Functions
- Limits of Trigonometric Functions
- Introduction of Derivatives
- Algebra of Derivative of Functions
- Derivative of Polynomials and Trigonometric Functions
- Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically
- Limits of Logarithmic Functions
- Limits of Exponential Functions
- Derivative of Slope of Tangent of the Curve
- Theorem for Any Positive Integer n
- Graphical Interpretation of Derivative
- Derive Derivation of x^n

##### Mathematical Reasoning

##### Mathematical Reasoning

##### Statistics and Probability

##### Statistics

- Measures of Dispersion
- Concept of Range
- Mean Deviation
- Introduction of Variance and Standard Deviation
- Standard Deviation
- Standard Deviation of a Discrete Frequency Distribution
- Standard Deviation of a Continuous Frequency Distribution
- Shortcut Method to Find Variance and Standard Deviation
- Introduction of Analysis of Frequency Distributions
- Comparison of Two Frequency Distributions with Same Mean
- Statistics Concept
- Central Tendency - Mean
- Central Tendency - Median
- Concept of Mode
- Measures of Dispersion - Quartile Deviation
- Standard Deviation - by Short Cut Method

##### Probability

#### notes

Let the two given points be P`(x_1, y_1, z_1)` and Q `(x_2, y_2, z_2)`. Let the point R (x, y, z) divide PQ in the given ratio m : n internally. Draw PL, QM and RN perpendicular to the XY-plane. Obviously PL || RN || QM and feet of these perpendiculars lie in a XY-plane. The points L, M and N will lie on a line which is the intersection of the plane containing PL, RN and QM with the XY-plane. Through the point R draw a line ST parallel to the line LM. Line ST will intersect the line LP externally at the point S and the line MQ at T, Fig

Also note that quadrilaterals LNRS and NMTR are parallelograms. The triangles PSR and QTR are similar. Therefore,

`m/n = (PR)/(QR) = (SP)/(QT) = (SL-PL)/(QM-TM) = (NR-PL)/(QM-NR) = (z-z_1)/(z_2-z)`

This implies z = `(mz_2+nz_1)/(m+n)`

Hence, the coordinates of the point R which divides the line segment joining two points P `(x_1, y_1, z_1)` and Q `(x_2, y_2, z_2)` internally in the ratio m : n are

`[(mx_2+nx_1)/(m+n) , (my_2+ny_1)/(m+n ), (mz_2 +nz_1)/(m+n)]`

If the point R divides PQ externally in the ratio m : n, then its coordinates are obtained by replacing n by – n so that coordinates of point R will be

`[(mx_2-nx_1)/(m+n) , (my_2-ny_1)/(m+n) , (mz_2 -nz_1)/(m+n)]`

**Case 1**- Coordinates of the mid-point: In case R is the mid-point of PQ, then

m:n = 1:1 so that x =`(x_1-x_2)/2` ,y= `(y_1+y_2)/2` and z=`(z_1+z_2)/2`

These are the coordinates of the mid point of the segment joining P `(x_1, y_1, z_1)` and Q `(x_2, y_2, z_2)`.**Case 2**- The coordinates of the point R which divides PQ in the ratio k : 1 are obtained

by taking` k = m/n` which are as given below:

`[(kx_2+x_1)/(1+k),(ky_2+y_1)/(1+k),(kz_2+z_1)/(1+k)]`