Topics
Chemical Reactions and Equations
- Chemical Equation
- Balancing Chemical Equation
- Types of Chemical Change or Chemical Reaction
- Direct Combination (or Synthesis) Reaction
- Decomposition Reactions
- Single Displacement Reactions
- Double Displacement Reaction
- Oxidation, Reduction and Redox Reactions
- Corrosion of Metals and Its Prevention
- Rancidity of Food and Its Prevention
Chemical Substances - Nature and Behaviour (Chemistry)
Acids, Bases and Salts
- Acids
- Bases (Alkalis)
- Indicators
- Properties of Acids
- Properties of Bases (Alkalis)
- Acid or a Base in a Water Solution
- Similarities and Differences Between Acids and Bases
- Strength of Acidic or Basic Solutions
- Salts
- Important Salts in Daily Life
- Preparation and Uses of Sodium Hydroxide
- Preparation and Uses of Bleaching Powder
- Preparation and Uses of Baking Soda
- Preparation and Uses of Washing Soda
- Preparation and Uses of Plaster of Paris
World of Living (Biology)
Metals and Non Metals
- Types of Elements: Metals
- Physical Properties of Metals
- Chemical Properties of Metal
- Types of Elements: Non-metal
- Physical Properties of Non-metal
- Chemical Properties of Non-metal
- Electrovalent (or Ionic) Bond
- Reactivity Series of Metals
- Extraction of Metals
- Refining of Metals
- Corrosion of Metals and Its Prevention
- The Covalent Bond
Natural Phenomena (Physics)
Carbon and its Compounds
- Carbon: a Versatile Element
- The Covalent Bond
- Saturated and Unsaturated Carbon Compounds
- Allotropy and Allotropes of Carbon
- Crystalline Allotropes of Carbon: Diamond
- Crystalline Allotropes of Carbon: Graphite
- Crystalline Allotropes of Carbon: Fullerene
- Chains, Branches and Rings of Carbon Compound
- Functional Groups in Carbon Compounds
- Homologous Series of Carbon Compound
- Nomenclature of Organic Compounds (IUPAC)
- Chemical Properties of Carbon Compound
- Ethanol
- Ethanoic Acid
- Soap
- Detergents
- Cleansing Action of Soap
Effects of Current (Physics)
Natural Resources
Periodic Classification of Elements
- History of Periodic Table: Early Attempts at the Classification of Elements
- Dobereiner’s Triads
- Newland's Law of Octaves
- Mendeleev’s Periodic Table
- Merits and Demerits of Mendeleev’s Periodic Table
- The Modern Periodic Table
- Periodic Properties
- Periodic Properties: Valency
- Periodic Properties: Atomic Radius Or Atomic Size
- Periodic Properties: Metallic Character
- Periodic Properties: Non-metallic Character
Life Processes
- Living Organisms and Life Processes
- Nutrients and Nutrition
- Mode of Nutrition in Plant
- Autotrophic Nutrition
- Heterotrophic Nutrition
- Different Ways of Taking Food
- Human Digestive System
- The Mouth and Buccal Cavity
- The Teeth and Its Structure
- The Salivary Glands
- Swallowing and Peristalsis
- The Food Pipe/Oesophagus
- The Stomach
- The Small Intestine
- Pancreas
- Absorption of Food
- The Large Intestine
- Assimilation of Food
- Liver
- Respiration
- Respiration in Organisms
- Breathing in Other Animals
- Osmoregulation
- Types of Respiration: Aerobic and Anaerobic Respiration
- Human Respiratory System
- Circulation
- Blood
- Composition of Blood: Plasma (The Liquid Portion of Blood)
- Composition of Blood: Red Blood Cells (Erythrocytes)
- Composition of Blood: White Blood Cells (Leukocytes)
- Composition of Blood: Blood Platelets (Thrombocytes)
- Blood Circulatory System in Human
- Human Heart
- Blood Vessels – Arteries, Veins, and Capillaries
- Circulation of Blood in the Heart (Functioning of Heart)
- Types of Blood Circulation
- Heart Beat - Heart Sounds "LUBB" and "DUP"
- Function of Platelets - Clotting of Blood (Coagulation)
- Lymph and Lymphatic System
- Blood Pressure (B.P.)
- Transportation of Water and Food in Plants
- Water and Mineral Absorption by Root
- Translocation of Water (Ascent of Sap)
- Translocation of Mineral Ions
- Transport of Food
- Transpiration
- Excretion: Substances to Be Eliminated
- Human Excretory System
- Function of the Kidney - “Production of Urine”
- Excretion in Plants
Internal assessment
Control and Co-ordination
- Control and Co-ordination in Animals
- Human Nervous System
- Neuron (Or Nerve Cell) and Its Types
- Neuron as Structural and Functional Unit of Neural System
- Nerve Fibres
- Major Division of the Nervous System
- Central Nervous System (CNS)
- Peripheral Nervous System (PNS)
- The Human Brain
- Central Nervous System (CNS): Structure of Human Brain
- Reflex and Reflex Action
- Nervous Pathways in Reflexes
- Reflex Arc
- Co-ordination in Plant: Tropism in Plants
- Hormones
- Plant Hormones
- Types of Plant Hormones: Auxins
- Types of Plant Hormones: Gibberellins
- Types of Plant Hormones: Ethylene
- Types of Plant Hormones: Cytokinins
- Types of Plant Hormones: Abscisic Acid (ABA)
- Types of Plant Hormones: Ethylene
- Hormones in Animals
- Human Endocrine System
- Pituitary Gland or Hypophysis Gland
- Thyroid Gland
- Parathyroid Gland
- Pancreas (Islets of Langerhans)
- Adrenal Gland (Suprarenal Gland)
- Reproductive Glands (Gonads)
- Thymus Gland
How do Organisms Reproduce?
- Accumulation of Variation During Reproduction
- Reproduction in Plant
- Mode of Reproduction in Plant
- Asexual Reproduction in Plant
- Natural Vegetative Reproduction
- Sexual Reproduction in Flowering Plants
- Sexual Reproduction in Animals
- Human Reproductive System
- The Male Reproductive System
- The Female Reproductive System
- Menstrual Cycle (Ovarian Cycle)
- Reproductive Health
- Sexually Transmitted Diseases (STD)
Heredity and Evolution
- Accumulation of Variation During Reproduction
- Heredity
- Gregor Johann Mendel – Father of Genetics
- Inheritance of One Gene (Monohybrid Cross)
- Inheritance of Two Genes (Dihybrid Cross)
- Mendelian Inheritance - Mendel’s Laws of Heredity
- Sex Determination
- Evolution
- Lamarck’s Theory of Evolution
- Darwin’s Theory of Natural Selection
- Theories of Origin of Life
- Speciation
- Evolution and Classiffication
- Evidences for Biological Evolution
- Paleobotany
- Evolution by Stages
- Origin and Evolution of Man
Light - Reflection and Refraction
- Reflection of Light
- Law of Reflection of Light
- Mirrors and Its Types
- Plane Mirror and Reflection
- Spherical Mirrors
- Rules for the Construction of Image Formed by a Spherical Mirror
- Images Formed by Spherical Mirrors
- Concave Mirror
- Image Formation by Concave Mirror
- Convex Mirror
- Image Formation by Convex Mirror
- Sign Convention for Reflection by Spherical Mirrors
- Mirror Equation/Formula
- Linear Magnification (M) Due to Spherical Mirrors
- Refraction of Light
- Refraction of Light Through a Rectangular Glass Slab
- Law of Refraction of Light
- Refractive Index
- Spherical Lens
- Images Formed by Sperical Lenses
- Guideline for Image Formation Due to Refraction Through a Convex and Concave Lens
- Concave Lens
- Images Formed Due to Refraction Through a Concave Lens
- Convex Lens
- Images Formed Due to Refraction Through a Convex Lens
- Sign Convention for Spherical Lenses
- Lens Formula
- Magnification Due to Spherical Lenses
- Power of a Lens
The Human Eye and the Colourful World
- Human Eye: Structure of the Eye
- Working of the Human Eye
- Eye Defect and Its Correction: Myopia Or Near-sightedness
- Eye Defect and its correction: Hypermetropia or far-sightedness
- Eye Defect and Its Correction: Presbyopia
- Care of the Eyes
- Refraction of Light Through a Prism
- Prism
- Dispersion of Light Through Prism and Formation of Spectrum
- Atmospheric Refraction
- Application of Atmospheric Refraction
- Scattering of Light and Its Types
- Applications of Scattering of Light
Electricity
- Electricity
- Electric Current
- Electric Circuit
- Potential and Potential Difference
- Symbols and Functions of Various Components of an Electric Circuits
- Ohm's Law (V = IR)
- Factors Affecting the Resistance of a Conductor
- Electrical Resistivity and Electrical Conductivity
- Resistors in Series
- Resistances in Parallel
- Effects of Electric Current
- Heating Effect of Electric Current
- Electrical Power
Magnetic Effects of Electric Current
- Magnetic Effect of Electric Current
- Magnetic Field
- Magnetic Field Lines
- Magnetic Field Due to a Current Carrying Straight Conductor
- Rule to Find the Direction of Magnetic Field
- Magnetic Field Due to Current in a Loop (Or Circular Coil)
- Magnetic Field Due to a Current Carving Cylindrical Coil (or Solenoid)
- Force on a Current Carrying Conductor in a Magnetic Field
- Electric Motor
- Electromagnetic Induction
- Faraday's Laws of Electromagnetic Induction
- Electric Generator
- Alternating Current (A.C.) Generator
- Direct Current Motor
- Household Electrical Circuits
- Distinction Between an A.C. Generator and D.C. Motor
- Types of current: Alternating Current (A.C.) and Direct Current (D.C.)
Sources of Energy
- Source of Energy
- Conventional Sources of Energy and Non-conventional Sources of Energy
- Fossil Fuels
- Heat Energy (Thermal Energy)
- Hydroelectric Energy
- Bio-energy
- Wind Energy
- Solar Energy
- Solar Energy Devices
- Energy from the Sea
- Geothermal Energy
- Nuclear Energy
- Nuclear Fission
- Different Forms of Energy
- Environmental Consequences
- How Long Will an Energy Source Last Us?
Our Environment
- The Environment
- Ecosystem
- Structure of an Ecosystem
- Classification of Animal
- Food Chain
- Tropic Level
- Food Web
- Energy Flow in an Ecosystem
- Ozone Layer Depletion
- Waste and Its Categories
- Wastes Generated in Our Environment
- Waste Separation Exercise
- Solid Waste Management
Sustainable Management of Natural Resources
- Sustainability of Natural Resources
- Case Study: Ganga Pollution and Ganga Action Plan
- Solid Waste Management
- Five R’s of Waste Management
- Conservation and Judicious Use of Resources
- Forests: Our Lifeline
- Stakeholders of Forest
- Conservation of Forest
- Conservation of Wildlife
- Water Management (Conservation of Water)
- Fresh Water Management
- Non-crystalline/Amorphous Forms: Coal
- Petroleum
- Conservation of Coal, Petroleum, and Natural Resources
- Overview of Natural Resource Management
- Why do we respire?
- Respiration in organisms
- The need for respiration in organisms
Notes
RESPIRATION:-
Respiration: The process by which a living being utilises the food to get energy, is called respiration. Respiration is an oxidation reaction in which carbohydrate is oxidized to produce energy.
The first step is the break-down of glucose, a six-carbon molecule, into a three-carbon molecule called pyruvate. This process takes place in the cytoplasm.
This process breaks up the three-carbon pyruvate molecule to give three molecules of carbon dioxide. Breakdown of pyruvate using oxygen takes place in the mitochondria.
Respiration involves:-
Gaseous exchange (Breathing) – Intake of oxygen from the atmosphere and release of carbon dioxide
Cellular respiration – the breakdown of simple food in order to release energy inside the cell.
TYPES OF RESPIRATION:-
Aerobic respiration: This type of respiration happens in the presence of oxygen. Pyruvic acid is converted into carbon dioxide. Energy is released and water molecule is also formed at the end of this process.
Anaerobic respiration: This type of respiration happens in the absence of oxygen. Pyruvic acid is either converted into ethyl alcohol or lactic acid. Ethyl alcohol is usually formed in case of anaerobic respiration in microbes, like yeast or bacteria. Lactic acid is formed in some microbes as well as in the muscle cells.
The above diagram shows us the breakdown of glucose by various pathways.
The energy released during cellular respiration is immediately used to synthesize a molecule called ATP which is used to fuel all other activities in the cell. In these processes, ATP is broken down giving rise to a fixed amount of energy which can derive the endothermic reactions taking place in the cell
The rate of breathing in aquatic organisms is much faster than that seen in terrestrial organisms because the amount of dissolved oxygen is fairly low compared to the amount of oxygen in the air.
Aerobic respiration |
Anaerobic respiration |
Occurs in the presence of oxygen |
Occurs in the absence of oxygen |
Occurs in the Mitochondria |
Occurs in the Cytoplasm |
End products are water and carbon dioxide |
End products are lactic acid and alcohol
|
More amount of energy is released |
Less amount of energy is released |
RESPIRATORY SYSTEM:-
Nostrils: There are two nostrils which converge to form a nasal passage. The inner lining of the nostrils is lined by hair and remains wet due to mucus secretion. The mucus and the hair help in filtering the dust particles out from inhaled air. Further, air is warmed up when it enters the nasal passage.
Pharynx: It is a tube-like structure which continues after the nasal passage.
Larynx: This part comes after the pharynx. This is also called voice box.
Trachea: This is composed of rings of cartilage. Cartilaginous rings prevent the collapse of trachea in the absence of air.
Bronchi: A pair of bronchi comes out from the trachea, with one bronchus going to each lung.
Bronchioles: A bronchus divides into branches and sub-branches inside the lung.
Alveoli: These are air sacs at the end of bronchioles. The alveolus is composed of a very thin membrane and is the place where blood capillaries open. This is alveolus, where the oxygen mixes with the blood and carbon dioxide exits from the blood. The exchange of gases, in alveoli, takes place due to the pressure differential.
Mechanism of Breathing
Inhalation |
Exhalation |
During inhalation, the thoracic cavity expands |
Thoracic cavity contracts |
Ribs lift up |
Ribs move downwards |
Diaphragm become flat in shape |
The diaphragm becomes dome shaped |
Volume of lungs increases and air enters the lungs |
Volume of lungs decreases and air exits from the lungs |
The blood brings carbon dioxide from the rest of the body for release into the alveoli, and the oxygen in the alveolar air is taken up by blood in the alveolar blood vessels to be transported to all the cells in the body. During the breathing cycle, when air is taken in and let out, the lungs always contain a residual volume of air so that there is sufficient time for oxygen to be absorbed and for the carbon dioxide to be released. When the body size of animals is large, the diffusion pressure alone cannot take care of oxygen delivery to all parts of the body. Instead, respiratory pigments take up oxygen from the air in the lungs and carry it to tissues which are deficient in oxygen before releasing it. In human beings, the respiratory pigment is haemoglobin which has a very high affinity for oxygen. This pigment is present in the red blood corpuscles. Carbon dioxide is more soluble in water than oxygen is and hence is mostly transported in the dissolved form in our blood.
Video Tutorials
Shaalaa.com | Life Processes part 12 (Respiration)
Series: series 1
00:18:21 undefined
00:11:41 undefined
00:14:32 undefined
00:14:35 undefined
00:07:38 undefined
00:13:18 undefined
00:13:58 undefined
00:10:22 undefined
00:13:24 undefined
00:41:07 undefined