#### Topics

##### Relations and Functions

##### Relations and Functions

##### Inverse Trigonometric Functions

##### Algebra

##### Matrices

- Introduction of Operations on Matrices
- Inverse of a Matrix by Elementary Transformation
- Multiplication of Two Matrices
- Negative of Matrix
- Properties of Matrix Addition
- Transpose of a Matrix
- Subtraction of Matrices
- Addition of Matrices
- Symmetric and Skew Symmetric Matrices
- Types of Matrices
- Proof of the Uniqueness of Inverse
- Invertible Matrices
- Elementary Transformations
- Multiplication of Matrices
- Properties of Multiplication of Matrices
- Equality of Matrices
- Order of a Matrix
- Matrices Notation
- Introduction of Matrices
- Multiplication of a Matrix by a Scalar
- Properties of Scalar Multiplication of a Matrix
- Properties of Transpose of the Matrices

##### Calculus

##### Vectors and Three-dimensional Geometry

##### Determinants

- Applications of Determinants and Matrices
- Elementary Transformations
- Inverse of a Square Matrix by the Adjoint Method
- Properties of Determinants
- Determinant of a Square Matrix
- Determinants of Matrix of Order One and Two
- Introduction of Determinant
- Area of a Triangle
- Minors and Co-factors
- Determinant of a Matrix of Order 3 × 3
- Rule A=KB

##### Linear Programming

##### Continuity and Differentiability

- Derivative - Exponential and Log
- Concept of Differentiability
- Proof Derivative X^n Sin Cos Tan
- Infinite Series
- Higher Order Derivative
- Algebra of Continuous Functions
- Continuous Function of Point
- Mean Value Theorem
- Second Order Derivative
- Derivatives of Functions in Parametric Forms
- Logarithmic Differentiation
- Exponential and Logarithmic Functions
- Derivatives of Implicit Functions
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Composite Functions - Chain Rule
- Concept of Continuity

##### Probability

##### Applications of Derivatives

- Maximum and Minimum Values of a Function in a Closed Interval
- Maxima and Minima
- Simple Problems on Applications of Derivatives
- Graph of Maxima and Minima
- Approximations
- Tangents and Normals
- Increasing and Decreasing Functions
- Rate of Change of Bodies or Quantities
- Introduction to Applications of Derivatives

##### Sets

##### Integrals

- Definite Integrals Problems
- Indefinite Integral Problems
- Comparison Between Differentiation and Integration
- Geometrical Interpretation of Indefinite Integrals
- Integrals of Some Particular Functions
- Indefinite Integral by Inspection
- Some Properties of Indefinite Integral
- Integration Using Trigonometric Identities
- Introduction of Integrals
- Evaluation of Definite Integrals by Substitution
- Properties of Definite Integrals
- Fundamental Theorem of Calculus
- Definite Integral as the Limit of a Sum
- Evaluation of Simple Integrals of the Following Types and Problems
- Methods of Integration: Integration by Parts
- Methods of Integration: Integration Using Partial Fractions
- Methods of Integration: Integration by Substitution
- Integration as an Inverse Process of Differentiation

##### Applications of the Integrals

##### Differential Equations

- Linear Differential Equations
- Solutions of Linear Differential Equation
- Homogeneous Differential Equations
- Differential Equations with Variables Separable Method
- Formation of a Differential Equation Whose General Solution is Given
- General and Particular Solutions of a Differential Equation
- Order and Degree of a Differential Equation
- Basic Concepts of Differential Equation
- Procedure to Form a Differential Equation that Will Represent a Given Family of Curves

##### Vectors

- Direction Cosines
- Properties of Vector Addition
- Geometrical Interpretation of Scalar
- Scalar Triple Product of Vectors
- Vector (Or Cross) Product of Two Vectors
- Scalar (Or Dot) Product of Two Vectors
- Position Vector of a Point Dividing a Line Segment in a Given Ratio
- Multiplication of a Vector by a Scalar
- Addition of Vectors
- Introduction of Vector
- Magnitude and Direction of a Vector
- Basic Concepts of Vector Algebra
- Vectors and Their Types
- Components of Vector
- Section Formula
- Vector Joining Two Points
- Vectors Examples and Solutions
- Projection of a Vector on a Line
- Introduction of Product of Two Vectors

##### Three - Dimensional Geometry

- Three - Dimensional Geometry Examples and Solutions
- Introduction of Three Dimensional Geometry
- Equation of a Plane Passing Through Three Non Collinear Points
- Relation Between Direction Ratio and Direction Cosines
- Intercept Form of the Equation of a Plane
- Coplanarity of Two Lines
- Distance of a Point from a Plane
- Angle Between Line and a Plane
- Angle Between Two Planes
- Angle Between Two Lines
- Vector and Cartesian Equation of a Plane
- Shortest Distance Between Two Lines
- Equation of a Line in Space
- Direction Cosines and Direction Ratios of a Line
- Equation of a Plane in Normal Form
- Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point
- Plane Passing Through the Intersection of Two Given Planes

##### Linear Programming

##### Probability

- Variance of a Random Variable
- Probability Examples and Solutions
- Conditional Probability
- Multiplication Theorem on Probability
- Independent Events
- Bayes’ Theorem
- Random Variables and Its Probability Distributions
- Mean of a Random Variable
- Bernoulli Trials and Binomial Distribution
- Introduction of Probability
- Properties of Conditional Probability

## Notes

Let `π_1` and `π_2` be two planes with equations `vec r . hat n _1 = d_1` and `vec r . hat n _2 = d_2` respectively. The position vector of any point on the line of intersection must satisfy both the equations fig.

If `vec t ` is the position vector of a point on the line , then

`vec t . hat n_1 = d_1` and `vec t . hat n _2 = d_2`

Therefore , for all real values of λ, we have

`vec t . (hat n _1 + lambda hat n_2) = d_1 + lambda d_2`

Since `vec t` is arbitrary, it satisfies for any point on the line.

Hence , the equation `vec r . (vec n_1 + lambda vec n_2) = d_1 + lambda d_2` represents a plane `π_3` which is such that if any vector ` vec r` satisfies both the equations `π_1` and `π_2`, it also satisfies the equation `π_3` i.e., any plane passing through the intersection of the planes

`vec r . vec n_1 = d_1` and `vec r . vec n_2 = d_2`

has the equation `vec r . (vec n_1 + lambda vec n_2) = d_1 + lambda d_2` ...(1)

**Cartesian form:**

In Cartesian system, let `vec n_1 = A_1 hat i + B_2 hat j + C_1 hat k`

`vec n_2 = A_2 hat i + B_2 hat j + C _2 hat k`

and `vec r = x hat i + y hat j + z hat k`

Then (1) becomes

`x (A_1 + lambda A_2) + y(B_1 + lambda B_2) + z(C_1 +lambda C_2) = d_1 + lambda d_2`

or `(A_1x +B_1y + C_1z -d_1) + lambda (A_2x + B_2y + C_2z -d_2) = 0` ..(2)

which is the required Cartesian form of the equation of the plane passing through the intersection of the given planes for each value of λ.