#### Topics

##### Relations and Functions

##### Relations and Functions

##### Inverse Trigonometric Functions

##### Algebra

##### Matrices

- Introduction of Operations on Matrices
- Inverse of a Nonsingular Matrix by Elementary Transformation
- Multiplication of Two Matrices
- Negative of Matrix
- Properties of Matrix Addition
- Concept of Transpose of a Matrix
- Subtraction of Matrices
- Addition of Matrices
- Symmetric and Skew Symmetric Matrices
- Types of Matrices
- Proof of the Uniqueness of Inverse
- Invertible Matrices
- Elementary Transformations
- Multiplication of Matrices
- Properties of Multiplication of Matrices
- Equality of Matrices
- Order of a Matrix
- Matrices Notation
- Introduction of Matrices
- Multiplication of a Matrix by a Scalar
- Properties of Scalar Multiplication of a Matrix
- Properties of Transpose of the Matrices

##### Calculus

##### Vectors and Three-dimensional Geometry

##### Determinants

- Applications of Determinants and Matrices
- Elementary Transformations
- Inverse of a Square Matrix by the Adjoint Method
- Properties of Determinants
- Determinant of a Square Matrix
- Determinants of Matrix of Order One and Two
- Introduction of Determinant
- Area of a Triangle
- Minors and Co-factors
- Determinant of a Matrix of Order 3 × 3
- Rule A=KB

##### Continuity and Differentiability

- Derivative - Exponential and Log
- Concept of Differentiability
- Proof Derivative X^n Sin Cos Tan
- Infinite Series
- Higher Order Derivative
- Algebra of Continuous Functions
- Continuous Function of Point
- Mean Value Theorem
- Second Order Derivative
- Derivatives of Functions in Parametric Forms
- Logarithmic Differentiation
- Exponential and Logarithmic Functions
- Derivatives of Implicit Functions
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Composite Functions - Chain Rule
- Concept of Continuity

##### Linear Programming

##### Applications of Derivatives

- Maximum and Minimum Values of a Function in a Closed Interval
- Maxima and Minima
- Simple Problems on Applications of Derivatives
- Graph of Maxima and Minima
- Approximations
- Tangents and Normals
- Increasing and Decreasing Functions
- Rate of Change of Bodies Or Quantities
- Introduction to Applications of Derivatives

##### Probability

##### Sets

##### Integrals

- Definite Integrals Problems
- Indefinite Integral Problems
- Comparison Between Differentiation and Integration
- Geometrical Interpretation of Indefinite Integral
- Integrals of Some Particular Functions
- Indefinite Integral by Inspection
- Properties of Indefinite Integral
- Integration Using Trigonometric Identities
- Introduction of Integrals
- Evaluation of Definite Integrals by Substitution
- Properties of Definite Integrals
- Fundamental Theorem of Calculus
- Definite Integral as the Limit of a Sum
- Evaluation of Simple Integrals of the Following Types and Problems
- Methods of Integration: Integration by Parts
- Methods of Integration: Integration Using Partial Fractions
- Methods of Integration: Integration by Substitution
- Integration as an Inverse Process of Differentiation

##### Applications of the Integrals

##### Differential Equations

- Linear Differential Equations
- Solutions of Linear Differential Equation
- Homogeneous Differential Equations
- Differential Equations with Variables Separable Method
- Formation of a Differential Equation Whose General Solution is Given
- General and Particular Solutions of a Differential Equation
- Order and Degree of a Differential Equation
- Basic Concepts of Differential Equation
- Procedure to Form a Differential Equation that Will Represent a Given Family of Curves

##### Vectors

- Direction Cosines
- Properties of Vector Addition
- Geometrical Interpretation of Scalar
- Scalar Triple Product of Vectors
- Vector (Or Cross) Product of Two Vectors
- Scalar (Or Dot) Product of Two Vectors
- Position Vector of a Point Dividing a Line Segment in a Given Ratio
- Multiplication of a Vector by a Scalar
- Addition of Vectors
- Introduction of Vector
- Magnitude and Direction of a Vector
- Basic Concepts of Vector Algebra
- Vectors and Their Types
- Components of a Vector
- Section Formula
- Vector Joining Two Points
- Vectors Examples and Solutions
- Projection of a Vector on a Line
- Introduction of Product of Two Vectors

##### Three - Dimensional Geometry

- Three - Dimensional Geometry Examples and Solutions
- Introduction of Three Dimensional Geometry
- Equation of a Plane Passing Through Three Non Collinear Points
- Relation Between Direction Ratio and Direction Cosines
- Intercept Form of the Equation of a Plane
- Coplanarity of Two Lines
- Distance of a Point from a Plane
- Angle Between Line and a Plane
- Angle Between Two Planes
- Angle Between Two Lines
- Vector and Cartesian Equation of a Plane
- Shortest Distance Between Two Lines
- Equation of a Line in Space
- Direction Cosines and Direction Ratios of a Line
- Equation of a Plane in Normal Form
- Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point
- Plane Passing Through the Intersection of Two Given Planes

##### Linear Programming

##### Probability

- Variance of a Random Variable
- Probability Examples and Solutions
- Conditional Probability
- Multiplication Theorem on Probability
- Independent Events
- Bayes’ Theorem
- Random Variables and Its Probability Distributions
- Mean of a Random Variable
- Bernoulli Trials and Binomial Distribution
- Introduction of Probability
- Properties of Conditional Probability

#### notes

Consider a plane whose perpendicular distance from the origin is d (d ≠ 0). in following fig.

If `vec (ON)` is the normal from the origin to the plane, and `hat n ` is the unit normal vector along `vec (ON)`. Then `vec (ON)` = d . `hat n` . Let P be any point on the plane. Therefore , `vec (NP)` is perpendicular to `vec (ON)`.

Therefore, `vec (NP) . vec (ON) = 0` ...(1)

Let `vec r` be the position vector of the point P, then `vec (NP) = vec r - d . hat n` (as `vec (ON) + vec (NP) = vec (OP)`)

Therefore, (1) becomes

`(vec r - d . hat n) . d hat n = 0`

or `(vec r - d.hat n). hat n =0` (d ≠ 0)

or `vec r . hat n - d hat n . hat n = 0`

i.e., `vec r . hat n = d` (as `hat n . hat n = 1`) ...(2)

This is the vector form of the equation of the plane.

**Cartesian form**

Equation (2) gives the vector equation of a plane, where `hat n` is the unit vector normal to the plane. Let P(x, y, z) be any point on the plane. Then

`vec (OP) = vec r = x hat i + y hat j + z hat k`

Let l, m, n be the direction cosines of `hat n` . Then

`hat n = l hat i + m hat j + n hat k `

Therefore, (2) gives

`(x hat i + y hat j + z hat k) . (l hat i + m hat j + n hat k) = d`

i.e. lx + my + nz = d ... (3)