Advertisement Remove all ads

Plane - Equation of a Plane in Normal Form

Advertisement Remove all ads

Topics

notes

Consider a plane whose perpendicular distance from  the origin is d (d ≠ 0). in following fig. 

If `vec (ON)` is the normal from the origin to the plane, and `hat n ` is the unit normal vector along `vec (ON)`. Then `vec (ON)` = d . `hat n` . Let P be any point on the plane. Therefore , `vec (NP)` is perpendicular to `vec (ON)`.
Therefore, `vec (NP) . vec (ON) = 0`  ...(1)
Let `vec r` be the position vector of the point P, then `vec (NP) = vec r - d . hat n`     (as `vec (ON) + vec (NP) = vec (OP)`)
Therefore, (1) becomes 
`(vec r - d . hat n) . d hat n = 0`
or `(vec r - d.hat n). hat n =0`  (d ≠ 0)
or `vec r . hat n - d  hat n . hat n = 0`
i.e., `vec r .  hat n = d`        (as `hat n . hat n = 1`)          ...(2)
This is the vector form of the equation of the plane. 

Cartesian form
Equation (2) gives the vector equation of a plane, where `hat n` is the unit vector normal to the plane. Let P(x, y, z) be any point on the plane.  Then 
`vec (OP) = vec r = x hat i + y hat j + z hat k`
Let l, m, n be the direction cosines of `hat n` . Then
`hat n = l hat i + m hat j + n hat k ` 
Therefore, (2) gives
`(x hat i + y hat j + z hat k) . (l hat i + m hat j + n hat k) = d`
i.e. lx + my + nz = d                             ... (3) 

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×