Topics
Number Systems
Real Numbers
Algebra
Pair of Linear Equations in Two Variables
- Linear Equation in Two Variables
- Graphical Method of Solution of a Pair of Linear Equations
- Substitution Method
- Elimination Method
- Cross - Multiplication Method
- Equations Reducible to a Pair of Linear Equations in Two Variables
- Consistency of Pair of Linear Equations
- Inconsistency of Pair of Linear Equations
- Algebraic Conditions for Number of Solutions
- Simple Situational Problems
- Pair of Linear Equations in Two Variables
- Relation Between Co-efficient
Arithmetic Progressions
Quadratic Equations
- Quadratic Equations
- Solutions of Quadratic Equations by Factorization
- Solutions of Quadratic Equations by Completing the Square
- Nature of Roots of a Quadratic Equation
- Relationship Between Discriminant and Nature of Roots
- Situational Problems Based on Quadratic Equations Related to Day to Day Activities to Be Incorporated
- Application of Quadratic Equation
Polynomials
Geometry
Circles
- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
- Tangent to a Circle
- Number of Tangents from a Point on a Circle
- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
Triangles
- Similar Figures
- Similarity of Triangles
- Basic Proportionality Theorem (Thales Theorem)
- Criteria for Similarity of Triangles
- Areas of Similar Triangles
- Right-angled Triangles and Pythagoras Property
- Similarity of Triangles
- Application of Pythagoras Theorem in Acute Angle and Obtuse Angle
- Triangles Examples and Solutions
- Angle Bisector
- Similarity of Triangles
- Ratio of Sides of Triangle
Constructions
- Division of a Line Segment
- Construction of Tangents to a Circle
- Constructions Examples and Solutions
Trigonometry
Heights and Distances
Trigonometric Identities
Introduction to Trigonometry
- Trigonometry
- Trigonometry
- Trigonometric Ratios
- Trigonometric Ratios and Its Reciprocal
- Trigonometric Ratios of Some Special Angles
- Trigonometric Ratios of Complementary Angles
- Trigonometric Identities
- Proof of Existence
- Relationships Between the Ratios
Statistics and Probability
Probability
Statistics
Coordinate Geometry
Lines (In Two-dimensions)
Mensuration
Areas Related to Circles
- Perimeter and Area of a Circle - A Review
- Areas of Sector and Segment of a Circle
- Areas of Combinations of Plane Figures
- Circumference of a Circle
- Area of Circle
Surface Areas and Volumes
- Concept of Surface Area, Volume, and Capacity
- Surface Area of a Combination of Solids
- Volume of a Combination of Solids
- Conversion of Solid from One Shape to Another
- Frustum of a Cone
- Concept of Surface Area, Volume, and Capacity
- Surface Area and Volume of Different Combination of Solid Figures
- Surface Area and Volume of Three Dimensional Figures
Internal Assessment
Notes
The mode of a list of data values is simply the most common value. Eg. find the mode of the ungrouped data 2, 3, 4, 4, 3, 9, 6, 3, 5, 3
Here the mode is 4 because the highest frequently occured number is 4.
But this was about ungrouped data. In this concept we will learn to find mode of a grouped data. The mode of a grouped data is found with the help of formula.
Mode= `l+ [(f1-fo)/ (2f1-fo-f2)] xx h`
where, l= lower limit of modal class
f1= frequency of the modal class
fo i.e f not= frequency of the class preceeding the modal class
f2= frequency of the class succeeding the modal class
h= Class size= Upper limit- Lower limit
Let's take a example for better understanding,
Find the mode of the given data:
Family size |
1-3 |
3-5 |
5-7 |
7-9 |
9-11 |
No. of families |
7 |
8 |
2 |
2 |
1 |
Solution:
The maximum frequency is 8
Therefore, Modal class= 3-5,
then l= 3, h=2, f1=8, fo=7, f=2
`Mode= l+ [(f1-fo)/ (2f1-fo-f2)] xx h`
= `3+ [(8-7)/ (16-7-2)] xx 2`
= `3+ (1 xx 2)/7`
= `3+ 0.285`
Mode= 3.285
Related QuestionsVIEW ALL [66]
For the following distribution
Marks | No. of students |
Less than 20 | 4 |
Less than 40 | 12 |
Less than 60 | 25 |
Less than 80 | 56 |
Less than 100 | 74 |
Less than 120 | 80 |
the modal class is?
For the following distribution
C.I. | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
F | 20 | 30 | 24 | 40 | 18 |
the sum of lower limits of the modal class and the median class is?
For the following distribution
Monthly Expenditure (Rs.) | No. of families |
Expenditure less than Rs. 10,000 | 15 |
Expenditure les than Rs. 13,000 | 31 |
Expenditure les than Rs. 16,000 | 50 |
Expenditure les than Rs. 19,000 | 67 |
Expenditure les than Rs. 22,000 | 85 |
Expenditure les than Rs. 25,000 | 100 |
The number of families having expenditure range (in ?) 16,000 - 19,000 is?
For the following distribution
C.l. | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
f | 10 | 15 | 12 | 20 | 9 |
the difference of the upper limit of the median class and the lower limit of the modal class is?