Mechanical Energy and Its Types - Potential Energy (U)

Advertisements

Topics

  • Force, Work, Power and Energy
  • Force
    • Force
    • Translational and Rotational Motions
    • Moment (Turning Effect) of a Force Or Torque
    • Couple
    • Equilibrium of Bodies and Its Types
    • Principle of Moments
    • Centre of Gravity
    • Uniform Circular Motion (UCM)
    • Centripetal Force
    • Centrifugal Forces
  • Work, Energy and Power
  • Light
  • Sound
  • Machines
    • Machines
    • Simple Machines
    • Technical Terms Related to a Machine
    • Principle of Machine
    • Relationship between efficiency (ղ), mechanical advantage (M.A.) and velocity ratio (VR)
    • Lever
    • Kinds of Levers
    • Examples of Each Class of Levers as Found in the Human Body
    • Pulley
    • Single Fixed Pulley
    • Single Movable Pulley
    • Combination of Pulleys
    • Machines (Numerical)
  • Refraction of Light at Plane Surfaces
    • Refraction of Light
    • Law of Refraction of Light
    • Speed of Light
    • Relationship Between Refractive Index and Speed of Light (µ = C/V)
    • Principle of Reversibility of the Path of Light
    • Experimental Verification of Law of Refraction and Determination of Refractive Index of Glass
    • Refraction of Light Through a Rectangular Glass Slab
    • Multiple Images in a Thick Plane Glass Plate Or Thick Mirror
    • Prism
    • Refraction of Light Through a Prism
    • Real and Apparent Depth
    • Apparent Bending of a Stick Under Water
    • Some Consequences of Refraction of Light
    • Transmission of Light from a Denser Medium (Glass Or Water) to a Rarer Medium (Air) at Different Angles of Incidence
    • Critical Angle
    • Relationship Between the Critical Angle and the Refractive Index (µ = 1/ Sin C)
    • Total Internal Reflection
    • Total Internal Reflection in a Prism
    • Use of a Total Internal Reflecting Prism in Place of a Plane Mirror
    • Consequences of Total Internal Refraction
  • Electricity and Magnetism
  • Heat
  • Refraction Through a Lense
  • Modern Physics
  • Spectrum
    • Deviation Produced by a Triangular Prism
    • Colour in White Light with Their Wavelength and Frequency Range
    • Dispersion of Light Through Prism and Formation of Spectrum
    • Electromagnetic Spectrum
    • Different Radiation of Electromagnetic Spectrum
    • Gamma Rays
    • X rays
    • Ultraviolet Radiations
    • Visible Light
    • Infrared Radiations
    • Micro Waves
    • Radio Waves
    • Scattering of Light and Its Types
    • Applications of Scattering of Light
  • Sound
    • Sound
    • Difference Between the Sound and Light Waves
    • Reflection of Sound
    • Echoes
    • Determination of Speed of Sound by the Method of Echo
    • Use of Echoes
    • Natural Vibrations
    • Damped Vibrations
    • Forced Vibrations
    • Resonance
    • Demonstration of Resonance
    • Some Examples of Resonance
    • Properties of Sounds
    • Loudness and Intensity
    • Pitch (or shrillness) and frequency
    • Audibility and Range
    • Quality (Or Timbre) and Wave Form
    • Noise Pollution
    • Noise and Music
    • Sound (Numerical)
  • Current Electricity
  • Household Circuits
    • Transmission of Power from the Power Generating Station to the Consumer
    • Power Distribution to a House
    • House Wiring (Ring System)
    • Electric Fuse
    • Miniature Circuit Breaker (MCB)
    • Electric Switch
    • Circuits with Dual Control Switches (Staircase Wire)
    • Earthing (Grounding)
    • Three-pin Plug and Socket
    • Colour Coding of Live, Neutral, and Earth Wires
    • High Tension Wires
    • Precautions to Be Taken While Using Electricity
  • Electro Magnetism
  • Calorimetry
    • Heat and Its Unit
    • Temperatures
    • Factors Affecting the Quantity of Heat Absorbed to Increase the Temperature of a Body
    • Difference Between Heat and Temperature
    • Thermal Capacity (Heat Capacity)
    • Specific Heat Capacity
    • Relationship Between the Heat Capacity and Specfic Heat Capacity
    • Specific Heat Capacity of Some Common Substances
    • Calorimetry and Calorimeter
    • Principle of Method of Mixtures (or Principle of Calorimetry)
    • Natural Phenomena and Consequences of High Specific Heat Capacity of Water
    • Some Examples of High and Low Heat Capacity
    • Change of State of Matter
    • Melting and Freezing
    • Heating Curve of Ice During Melting
    • Change in Volume on Melting
    • Effect of Pressure on the Melting Point
    • Effect of Impurities on the Melting Point
    • Concept of Boiling (Vaporization)
    • Heating Curve for Water
    • Change in Volume on Boiling
    • Effect of Pressure on the Boiling Point
    • Effect of Impurities on the Boiling Point
    • Latent Heat and Specific Latent Heat
    • Specific Latent Heat of Fusion of Ice
    • Explanation of Latent Heat of Melting on the Basis of Kinetic Model
    • Natural Consequences of High Specific Latent Heat of Fusion of Ice
  • Radioactivity
    • Structure of the Atom and Nucleus
    • Atomic Model
    • Isotopes
    • Isobars
    • Isotones or Isoneutronic
    • Radioactivity
    • Radioactivity as Emission of Alpha, Beta, and Gamma Radiations
    • Properties of Alpha Particles
    • Properties of Beta Particles
    • Properties of Gamma Radiations
    • Changes Within the Nucleus in Alpha, Beta and Gamma Emission
    • Alpha Decay (Alpha Emission)
    • Beta Decay (Beta Emission)
    • Gamma Decay (Gamma Emission)
    • Uses of Radioactive Isotopes
    • Sources of Harmful Radiations
    • Hazards of Radioactive Substances and Radiation
    • Safety Precautions While Using Nuclear Energy
    • Background Radiations
    • Nuclear Energy
    • Nuclear Fission
    • Distinction Between the Radioactive Decay and Nuclear Fission
    • Nuclear Fusion
    • Distinction Between the Nuclear Fission and Nuclear Fusion
  • Potential Energy
  • Expression for the potential Energy
  • Some examples of potential energy

Notes


POTENTIAL ENERGY OF AN OBJECT AT A HEIGHT:

An object increases its energy when raised through a height. This is because work is done on it against gravity while it is being raised. The energy present in such an object is the gravitational potential energy. The gravitational potential energy of an object at a point above the ground is defined as the work done in raising it from the ground to that point against gravity. It is easy to arrive at an expression for the gravitational potential energy of an object at a height.

Consider an object of mass, m. Let it be raised through a height, h from the ground. A force is required to do this. The minimum force required to raise the object is equal to the weight of the object, mg. The object gains energy equal to the work done on it. Let the work done on the object against gravity be W. That is, work done, W = force × displacement = mg × h = mgh Since work done on the object is equal to mgh, an energy equal to mgh units is gained by the object. This is the potential energy (EP) of the object. Ep = mgh

It is useful to note that the work done by gravity depends on the difference in vertical heights of the initial and final positions of the object and not on the path along which the object is moved.

The block is raised from position A to B by taking two different paths. Let the height AB = h. In both the situations the work done on the object is mgh.

Notes

Potential Energy:

Every object possesses some energy called Potential Energy. An object when gains energy may store it in itself as potential energy.

We know that when an object rises above the ground some work is done against gravity. Since work is done on the object, the object would gain some energy. The energy that the object gains at a height is called Gravitational Potential Energy. It is defined as the amount of work done required in raising an object above the ground up to a certain point against the gravity.

W = F x d = F x h (height)

And F = m x g (because the force is applied against gravity)

So, W = m x g x h

Hence potential energy of object A, Ep = m x g x h

Elastic Potential energy: Same work has to be done to change the shape of a body. This work gets stored in the deformed body in the form of elastic potential energy. Elastic potential energy is never negative whether due to extension or to compression.

If you would like to contribute notes or other learning material, please submit them using the button below.

Shaalaa.com | Potential Energy

Shaalaa.com


Next video


Shaalaa.com


Potential Energy [00:07:03]
S
Series: series 1
0%


Advertisements
Share
Notifications



      Forgot password?
Use app×