ISC (Commerce) Class 12CISCE

View all notifications

Logarithmic Differentiation

Create free account

      Forgot password?


we will learn to differentiate certain special class of functions given in the form 
y = f(x) = `[u(x)]^(v (x))`
 By taking logarithm (to base e) the above may be rewritten as
log y = v(x) log [u(x)]

Using chain rule we may differentiate this to get
`1/y . (dy)/(dx) = v(x) . 1/(u(x)) . u'(x) +v'(x) . log [u(x)]`

which implies that
`(dy)/(dx) = y [(v(x))/(u(x)) . u'(x) + v'(x) . log[u(x)]]`

The main point to be noted in this method is that f(x) and u(x) must always be positive as otherwise their logarithms are not defined. This process of differentiation is known as logarithms differentiation. 

Video Tutorials

We have provided more than 1 series of video tutorials for some topics to help you get a better understanding of the topic.

Series 1

Series 2

Series 3 | Differentiation - Logarithmic Differentiation

Next video

Differentiation - Logarithmic Differentiation [00:18:35]
View in app×