#### Topics

##### Number Systems

##### Algebra

##### Geometry

##### Trigonometry

##### Statistics and Probability

##### Coordinate Geometry

##### Mensuration

##### Internal Assessment

##### Real Numbers

##### Pair of Linear Equations in Two Variables

- Linear Equations in Two Variables
- Graphical Method of Solution of a Pair of Linear Equations
- Substitution Method
- Elimination Method
- Cross - Multiplication Method
- Equations Reducible to a Pair of Linear Equations in Two Variables
- Consistency of Pair of Linear Equations
- Inconsistency of Pair of Linear Equations
- Algebraic Conditions for Number of Solutions
- Simple Situational Problems
- Pair of Linear Equations in Two Variables
- Relation Between Co-efficient

##### Arithmetic Progressions

##### Quadratic Equations

- Quadratic Equations
- Solutions of Quadratic Equations by Factorization
- Solutions of Quadratic Equations by Completing the Square
- Nature of Roots
- Relationship Between Discriminant and Nature of Roots
- Situational Problems Based on Quadratic Equations Related to Day to Day Activities to Be Incorporated
- Quadratic Equations Examples and Solutions

##### Polynomials

##### Circles

- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
- Tangent to a Circle
- Number of Tangents from a Point on a Circle
- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles

##### Triangles

- Similar Figures
- Similarity of Triangles
- Basic Proportionality Theorem Or Thales Theorem
- Criteria for Similarity of Triangles
- Areas of Similar Triangles
- Right-angled Triangles and Pythagoras Property
- Similarity Triangle Theorem
- Application of Pythagoras Theorem in Acute Angle and Obtuse Angle
- Triangles Examples and Solutions
- Angle Bisector
- Similarity
- Ratio of Sides of Triangle

##### Constructions

##### Heights and Distances

##### Trigonometric Identities

##### Introduction to Trigonometry

##### Probability

##### Statistics

##### Lines (In Two-dimensions)

##### Areas Related to Circles

##### Surface Areas and Volumes

#### description

- Problems involving Angle of Elevation
- Problems involving Angle of Depression
- Problems involving Angle of Elevation and Depression

#### notes

In everyday life we come across many buildings, monuments and other structures. The heights of these structures can be found out with the help of trigonometry.

In this figure, the line AC drawn from the eye of the student to the top of the minar is called the line of sight. The student is looking at the top of the minar. The angle BAC, so formed by the line of sight with the horizontal, is called the angle of elevation of the top of the minar from the eye of the student.

Thus, the line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer. The angle of elevation of the point viewed is the angle formed by the line of sight with the horizontal when the point being viewed is above the horizontal level, i.e., the case when we raise our head to look at the object.

You would need to know the following:

(i) the distance DE at which the student is standing from the foot of the minar

(ii) the angle of elevation, ∠ BAC, of the top of the minar

(iii) the height AE of the student.

Assuming that the above three conditions are known, how can we determine the height of the minar?

In the figure, CD = CB + BD. Here, BD = AE, which is the height of the student.

To find BC, we will use trigonometric ratios of ∠ BAC or ∠ A. Our search narrows down to using either tan A or cot A, as these ratios involve AB and BC.

Therefore, `tanA= "BC"/"AB"` or `cotA= "AB"/"BC"`, which on solving would give us BC. By adding AE to BC, you will get the height of the minar.

Now, consider the situation given below, The girl sitting on the balcony is looking down at a flower pot placed on a stair of the temple. In this case, the line of sight is below the horizontal level. The angle so formed by the line of sight with the horizontal is called the angle of depression.

Thus, the angle of depression of a point on the object being viewed is the angle formed by the line of sight with the horizontal when the point is below the horizontal level, i.e., the case when we lower our head to look at the point being viewed

Example 1 : A tower stands vertically on the ground. From a point on the ground, which is 15 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.

Solution : First let us draw a simple diagram to represent the problem (see Figure). Here AB represents the tower, CB is the distance of the point from the tower and ∠ ACB is the angle of elevation. We need to determine the height of the tower, i.e., AB. Also, ACB is a triangle, right-angled at B.

To solve the problem, we choose the trigonometric ratio tan 60° (or cot 60°), as the ratio involves AB and BC.

Now, `tan 60° = "AB"/"BC"`

`sqrt3= "AB"/ 15`

`"AB"= 15 sqrt3`

Hence, the height of the tower is`15 sqrt3` m.

#### Video Tutorials

#### Shaalaa.com | Application of Trigonometry part 1 (Concepts)

##### Series: 1

00:13:33 undefined

00:09:18 undefined

00:11:50 undefined

00:08:43 undefined

00:08:57 undefined

00:10:12 undefined

00:10:18 undefined