#### Topics

##### Trigonometric Functions

- Concept of Angle
- Introduction of Trigonometric Functions
- Signs of Trigonometric Functions
- Domain and Range of Trigonometric Functions
- Trigonometric Functions of Sum and Difference of Two Angles
- Trigonometric Equations
- Truth of the Identity
- Negative Function Or Trigonometric Functions of Negative Angles
- 90 Degree Plusminus X Function
- Conversion from One Measure to Another
- 180 Degree Plusminus X Function
- 2X Function
- 3X Function
- Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications
- Graphs of Trigonometric Functions
- Transformation Formulae
- Values of Trigonometric Functions at Multiples and Submultiples of an Angle
- Sine and Cosine Formulae and Their Applications

##### Binomial Theorem

##### Statistics

- Measures of Dispersion
- Concept of Range
- Mean Deviation
- Introduction of Variance and Standard Deviation
- Standard Deviation
- Standard Deviation of a Discrete Frequency Distribution
- Standard Deviation of a Continuous Frequency Distribution
- Shortcut Method to Find Variance and Standard Deviation
- Introduction of Analysis of Frequency Distributions
- Comparison of Two Frequency Distributions with Same Mean
- Statistics Concept
- Central Tendency - Mean
- Central Tendency - Median
- Concept of Mode
- Measures of Dispersion - Quartile Deviation
- Standard Deviation - by Short Cut Method

##### Sets and Functions

##### Limits and Derivatives

- Intuitive Idea of Derivatives
- Introduction of Limits
- Introduction to Calculus
- Algebra of Limits
- Limits of Polynomials and Rational Functions
- Limits of Trigonometric Functions
- Introduction of Derivatives
- Algebra of Derivative of Functions
- Derivative of Polynomials and Trigonometric Functions
- Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically
- Limits of Logarithmic Functions
- Limits of Exponential Functions
- Derivative of Slope of Tangent of the Curve
- Theorem for Any Positive Integer n
- Graphical Interpretation of Derivative
- Derive Derivation of x^n

##### Mathematical Reasoning

##### Straight Lines

##### Introduction to Three-dimensional Geometry

##### Probability

##### Algebra

##### Relations and Functions

- Cartesian Product of Sets
- Relation
- Concept of Functions
- Some Functions and Their Graphs
- Algebra of Real Functions
- Ordered Pairs
- Equality of Ordered Pairs
- Pictorial Diagrams
- Graph of Function
- Pictorial Representation of a Function
- Exponential Function
- Logarithmic Functions
- Brief Review of Cartesian System of Rectanglar Co-ordinates

##### Sequence and Series

##### Linear Inequalities

##### Coordinate Geometry

##### Sets

- Sets and Their Representations
- The Empty Set
- Finite and Infinite Sets
- Equal Sets
- Subsets
- Power Set
- Universal Set
- Venn Diagrams
- Intrdouction of Operations on Sets
- Union Set
- Intersection of Sets
- Difference of Sets
- Complement of a Set
- Practical Problems on Union and Intersection of Two Sets
- Proper and Improper Subset
- Open and Close Intervals
- Operation on Set - Disjoint Sets
- Element Count Set

##### Conic Sections

- Sections of a Cone
- Concept of Circle
- Introduction of Parabola
- Standard Equations of Parabola
- Latus Rectum
- Introduction of Ellipse
- Relationship Between Semi-major Axis, Semi-minor Axis and the Distance of the Focus from the Centre of the Ellipse
- Special Cases of an Ellipse
- Eccentricity
- Standard Equations of an Ellipse
- Latus Rectum
- Introduction of Hyperbola
- Eccentricity
- Standard Equation of Hyperbola
- Latus Rectum
- Standard Equation of a Circle

##### Calculus

##### Complex Numbers and Quadratic Equations

##### Permutations and Combinations

- Fundamental Principles of Counting
- Permutations
- Combination
- Introduction of Permutations and Combinations
- Permutation Formula to Rescue and Type of Permutation
- Smaller Set from Bigger Set
- Derivation of Formulae and Their Connections
- Simple Applications of Permutations and Combinations
- Factorial N (N!) Permutations and Combinations

##### Mathematical Reasoning

##### Statistics and Probability

##### Principle of Mathematical Induction

#### notes

In the Chapter on Sets, we have studied about different ways of combining two or more sets, viz, union, intersection, difference, complement of a set etc. Like-wise we can combine two or more events by using the analogous set notations. **i) Complementary Event:**

For every event A, there corresponds another event A′called the complementary event to A. It is also called the event ‘not A’.

For example, take the experiment ‘of tossing three coins’. An associated sample space is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let A={HTH, HHT, THH} be the event ‘only one tail appears’.

Clearly for the outcome HTT, the event A has not occurred. But we may say that the event ‘not A’ has occurred. Thus, with every outcome which is not in A, we say that ‘not A’ occurs.

Thus the complementary event ‘not A’ to the event A is

A′ = {HHH, HTT, THT, TTH, TTT}**ii) The Event ‘A or B’** :

The union of two sets A and B denoted by A ∪ B contains all those elements which are either in A or in B or in both.

When the sets A and B are two events associated with a sample space, then ‘A ∪ B’ is the event ‘either A or B or both’. This event ‘A ∪ B’ is also called ‘A or B’.

Therefore Event ‘A or B’ = A ∪ B **iii) The Event ‘A and B’ :**

The intersection of two sets A ∩ B is the set of those elements which are common to both A and B. i.e., which belong to both ‘A and B’.

If A and B are two events, then the set A ∩ B denotes the event ‘A and B’.

For example, in the experiment of ‘throwing a die twice’ Let A be the event ‘score on the first throw is six’ and B is the event ‘sum of two scores is atleast 11’ then

A = {(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}, and B = {(5,6), (6,5), (6,6)}

so A ∩ B = {(6,5), (6,6)}

Note that the set A ∩ B = {(6,5), (6,6)} may represent the event ‘the score on the first throw is six and the sum of the scores is atleast 11’.**iv) The Event ‘A but not B’: **

We know that A–B is the set of all those elements which are in A but not in B. Therefore, the set A–B may denote the event ‘A but not B’.We know that

A – B = A ∩ B´