HSC Science (Electronics) 12th Board ExamMaharashtra State Board

View all notifications

Derivatives of Implicit Functions

Create free account

      Forgot password?


Until now we have been differentiating various functions given in the form y = f(x). But it is not necessary that functions are always expressed in this form. For example, consider one of the following relationships between x and y:
x – y – π = 0 
x + sin xy – y = 0 
In the first case, we can solve for y and rewrite the relationship as y = x – π. In the second case, it does not seem that there is an easy way to solve for y. Nevertheless, there is no doubt about the dependence of y on x in either of the cases. When a relationship between x and y is expressed in a way that it is easy to solve for y and write y = f(x), we say that y is given as an explicit function of x. In the latter case it  is implicit that y is a function of x and we say that the relationship of the second type, above, gives function implicitly. In this subsection, we learn to differentiate implicit functions.

Shaalaa.com | Differentiation Part 2- Implicit functions


Next video


Differentiation Part 2- Implicit functions [00:32:28]
Series 2: playing of 1

View in app×