#### Topics

##### Integers

- Concept for Natural Numbers
- Concept for Whole Numbers
- Concept of Negative Numbers
- Concept of Integers
- Representation of Integers on the Number Line
- Concept for Ordering of Integers
- Addition of Integers
- Addition of Integers on Number line
- Subtraction of Integers
- Properties of Addition and Subtraction of Integers
- Multiplication of a Positive and a Negative Integers
- Multiplication of Two Negative Integers
- Product of Three Or More Negative Integers
- Closure Property of Multiplication of Integers
- Commutative Property of Multiplication of Integers
- Associative Property of Multiplication of Integers
- Distributive Property of Multiplication of Integers
- Multiplication of Integers with Zero
- Multiplicative Identity of Integers
- Making Multiplication Easier of Integers
- Division of Integers
- Properties of Division of Integers

##### Fractions and Decimals

- Concept of Fractions
- Types of Fraction
- Concept of Proper Fractions.
- Improper Fraction and Mixed Fraction
- Concept for Equivalent Fractions
- Like and Unlike Fraction
- Comparing Fractions
- Addition of Fraction
- Subtraction of Fraction
- Multiplication of a Fraction by a Whole Number
- Fraction as an Operator 'Of'
- Multiplication of a Fraction by a Fraction
- Division of Fractions
- Concept for Reciprocal of a Fraction
- Concept of Decimal Numbers
- Multiplication of Decimal Numbers
- Multiplication of Decimal Numbers by 10, 100 and 1000
- Division of Decimal Numbers by 10, 100 and 1000
- Division of a Decimal Number by a Whole Number
- Division of a Decimal Number by Another Decimal Number

##### Data Handling

##### Simple Equations

##### Lines and Angles

- Concept of Points
- Concept of Line
- Concept of Line Segment
- Concept of Intersecting Lines
- Concept of Angle - Arms, Vertex, Interior and Exterior Region
- Complementary Angles
- Supplementary Angles
- Adjacent Angles
- Concept of Linear Pair
- Concept of Vertically Opposite Angles
- Concept of Intersecting Lines
- Concept of Parallel Lines
- Pairs of Lines - Transversal
- Pairs of Lines - Angles Made by a Transversal
- Pairs of Lines - Transversal of Parallel Lines
- Checking Parallel Lines

##### The Triangle and Its Properties

- Concept of Triangles - Sides, Angles, Vertices, Interior and Exterior of Triangle
- Classification of Triangles (On the Basis of Sides, and of Angles)
- Equilateral Triangle
- Isosceles Triangles
- Scalene Triangle
- Acute Angled Triangle
- Obtuse Angled Triangle
- Right Angled Triangle
- Median of a Triangle
- Altitudes of a Triangle
- Exterior Angle of a Triangle and Its Property
- Angle Sum Property of a Triangle
- Some Special Types of Triangles - Equilateral and Isosceles Triangles
- Sum of the Lengths of Two Sides of a Triangle
- Right-angled Triangles and Pythagoras Property

##### Congruence of Triangles

##### Comparing Quantities

- Concept of Ratio
- Concept of Equivalent Ratios
- Concept of Proportion
- Concept of Unitary Method
- Concept of Percent and Percentage
- Converting Fractional Numbers to Percentage
- Converting Decimals to Percentage
- Converting Percentages to Fractions
- Converting Percentages to Decimals
- Estimation in Percentages
- Interpreting Percentages
- Converting Percentages to “How Many”
- Ratios to Percents
- Increase Or Decrease as Percent
- Concepts of Cost Price, Selling Price, Total Cost Price, and Profit and Loss, Discount, Overhead Expenses and GST
- Profit or Loss as a Percentage
- Concept of Principal, Interest, Amount, and Simple Interest

##### Rational Numbers

- Concept of Rational Numbers
- Equivalent Rational Number
- Positive and Negative Rational Numbers
- Rational Numbers on a Number Line
- Rational Numbers in Standard Form
- Comparison of Rational Numbers
- Rational Numbers Between Two Rational Numbers
- Addition of Rational Number
- Subtraction of Rational Number
- Multiplication of Rational Numbers
- Division of Rational Numbers

##### Practical Geometry

- Construction of a Line Parallel to a Given Line, Through a Point Not on the Line
- Construction of Triangles
- Constructing a Triangle When the Length of Its Three Sides Are Known (SSS Criterion)
- Constructing a Triangle When the Lengths of Two Sides and the Measure of the Angle Between Them Are Known. (SAS Criterion)
- Constructing a Triangle When the Measures of Two of Its Angles and the Length of the Side Included Between Them is Given. (ASA Criterion)
- Constructing a Right-angled Triangle When the Length of One Leg and Its Hypotenuse Are Given (RHS Criterion)

##### Perimeter and Area

- Mensuration
- Concept of Perimeter
- Perimeter of a Rectangle
- Perimeter of Squares
- Perimeter of Triangles
- Perimeter of Polygon
- Concept of Area
- Area of Square
- Area of Rectangle
- Triangles as Parts of Rectangles and Square
- Generalising for Other Congruent Parts of Rectangles
- Area of a Triangle
- Area of a Parallelogram
- Circumference of a Circle
- Area of Circle
- Conversion of Units
- Problems based on Perimeter and Area
- Problems based on Perimeter and Area

##### Algebraic Expressions

- Algebraic Expressions
- Terms, Factors and Coefficients of Expression
- Like and Unlike Terms
- Types of Algebraic Expressions as Monomials, Binomials, Trinomials, and Polynomials
- Addition of Algebraic Expressions
- Subtraction of Algebraic Expressions
- Evaluation of Algebraic Expressions by Substituting a Value for the Variable.
- Use of Variables in Common Rules

##### Exponents and Powers

- Concept of Exponents
- Multiplying Powers with the Same Base
- Dividing Powers with the Same Base
- Taking Power of a Power
- Multiplying Powers with Different Base and Same Exponents
- Dividing Powers with Different Base and Same Exponents
- Numbers with Exponent Zero, One, Negative Exponents
- Miscellaneous Examples Using the Laws of Exponents
- Decimal Number System Using Exponents and Powers
- Expressing Large Numbers in the Standard Form

##### Symmetry

##### Visualizing Solid Shapes

- Plane Figures and Solid Shapes
- Faces, Edges and Vertices
- Nets for Building 3-d Shapes - Cube, Cuboids, Cylinders, Cones, Pyramid, and Prism
- Drawing Solids on a Flat Surface - Oblique Sketches
- Drawing Solids on a Flat Surface - Isometric Sketches
- Visualising Solid Objects
- Viewing Different Sections of a Solid

#### definition

**Reflection symmetry:** Reflection symmetry is symmetry with respect to reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.

#### notes

**Reflection Symmetry:**

The concept of line symmetry is closely related to mirror reflection.

Line symmetry and mirror reflection are naturally related and linked to each other. Reflection symmetry is symmetry with respect to reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. The line symmetry is closely related to mirror reflection. When dealing with mirror reflection, we have to take into account the left ↔ right changes in orientation.

Write the English capital letters A, H, M in a large size on separate sheets of paper. Fold the paper so that their two parts fall exactly on each other. Mark dots the line which makes two equal parts of the figure. This line is the axis of symmetry of the figure. Some figures have more than one axis of symmetry.

If a symmetrical figure gets divided by an axis in the figure into two parts which fall exactly on each other, its symmetry is called reflectional symmetry.

The object and its image are symmetrical with reference to the mirror line. If the paper is folded, the mirror line becomes the line of symmetry. We then say that the image is the reflection of the object in the mirror line. You can also see that when an object is reflected, there is no change in the lengths and angles; i.e. the lengths and angles of the object and the corresponding lengths and angles of the image are the same

**Kaleidoscope:**

A kaleidoscope uses mirrors to produce images that have several lines of symmetry (as shown here for example). Usually, two mirrors strips forming a V-shape are used. The angle between the mirrors determines the number of lines of symmetry.