Topics
Sets and Relations
Functions
Complex Numbers 33
Sequences and Series
Locus and Straight Line
Determinants
Limits
Continuity
Differentiation
Partition Values
Measures of Dispersion
Skewness
Bivariate Frequency Distribution and Chi Square Statistic
Correlation
Permutations and Combinations
- Introduction of Permutations and Combinations
- Fundamental Principles of Counting
- Concept of Addition Principle
- Concept of Multiplication Principle
- Concept of Factorial Function
- Permutations
- Permutations When All Objects Are Distinct
- Permutations When Repetitions Are Allowed
- Permutations When All Objects Are Not Distinct
- Circular Permutations
- Properties of Permutations
- Combination
- Properties of Combinations
Probability
Linear Inequations
Commercial Mathematics
Related QuestionsVIEW ALL [8]
Following tale gives income (X) and expenditure (Y) of 25 families:
Y/X | 200 – 300 | 300 – 400 | 400 – 500 |
200 – 300 | IIII I | IIII I | I |
300 – 400 | – | IIII | IIII I |
400 – 500 | – | – | II |
Find Conditional frequency distribution of X when Y is between 300 – 400.
Following tale gives income (X) and expenditure (Y) of 25 families:
Y/X | 200 – 300 | 300 – 400 | 400 – 500 |
200 – 300 | IIII I | IIII I | I |
300 – 400 | – | IIII | IIII I |
400 – 500 | – | – | II |
Find Conditional frequency distribution of Y when X is between 200 – 300.
Following data gives the coded price (X) and demand (Y) of a commodity.
Price | 5 | 7 | 9 | 8 | 10 | 7 | 9 | 8 | 5 | 11 | 11 | 10 | 2 | 3 | 9 |
Demand | 9 | 15 | 13 | 15 | 14 | 10 | 11 | 14 | 10 | 14 | 6 | 14 | 15 | 11 | 12 |
Price | 2 | 4 | 3 | 14 | 6 | 10 | 7 | 15 | 8 | 6 | 5 | 6 | 11 | 14 | 15 |
Demand | 6 | 11 | 8 | 11 | 10 | 15 | 9 | 15 | 13 | 9 | 14 | 10 | 7 | 5 | 6 |
Classify the data by taking classes 0 – 4, 5 – 9, etc. for X and 5 – 8, 9 – 12, etc. for Y. Also find conditional frequency distribution of Y when X is less than 10
Following data gives the age in years and marks obtained by 30 students in an intelligence test.
Age | 16 | 17 | 22 | 19 | 21 | 16 |
Marks | 16 | 19 | 39 | 50 | 48 | 41 |
Age | 21 | 20 | 20 | 23 | 22 | 19 |
Marks | 59 | 44 | 42 | 62 | 37 | 67 |
Age | 23 | 20 | 22 | 22 | 23 | 22 |
Marks | 45 | 57 | 35 | 37 | 38 | 56 |
Age | 17 | 18 | 16 | 21 | 19 | 20 |
Marks | 54 | 61 | 47 | 67 | 49 | 56 |
Age | 17 | 18 | 23 | 21 | 20 | 16 |
Marks | 51 | 42 | 65 | 56 | 52 | 48 |
Prepare a bivariate frequency distribution by taking class intervals 16 – 18, 18 – 20, … etc. for age and 10 – 20, 20 – 30, … etc. for marks. Find conditional frequency distribution of marks obtained when the age of students is between 20 – 22.