Change of State of Matter



  • Force, Work, Power and Energy
  • Force
    • Force
    • Translational and Rotational Motions
    • Moment (Turning Effect) of a Force Or Torque
    • Couple
    • Equilibrium of Bodies and Its Types
    • Principle of Moments
    • Centre of Gravity
    • Uniform Circular Motion (UCM)
    • Centripetal Force
    • Centrifugal Forces
  • Work, Energy and Power
  • Light
  • Sound
  • Machines
    • Machines
    • Simple Machines
    • Technical Terms Related to a Machine
    • Principle of Machine
    • Relationship between efficiency (ղ), mechanical advantage (M.A.) and velocity ratio (VR)
    • Lever
    • Kinds of Levers
    • Examples of Each Class of Levers as Found in the Human Body
    • Pulley
    • Single Fixed Pulley
    • Single Movable Pulley
    • Combination of Pulleys
    • Machines (Numerical)
  • Refraction of Light at Plane Surfaces
    • Refraction of Light
    • Law of Refraction of Light
    • Speed of Light
    • Relationship Between Refractive Index and Speed of Light (µ = C/V)
    • Principle of Reversibility of the Path of Light
    • Experimental Verification of Law of Refraction and Determination of Refractive Index of Glass
    • Refraction of Light Through a Rectangular Glass Slab
    • Multiple Images in a Thick Plane Glass Plate Or Thick Mirror
    • Prism
    • Refraction of Light Through a Prism
    • Real and Apparent Depth
    • Apparent Bending of a Stick Under Water
    • Some Consequences of Refraction of Light
    • Transmission of Light from a Denser Medium (Glass Or Water) to a Rarer Medium (Air) at Different Angles of Incidence
    • Critical Angle
    • Relationship Between the Critical Angle and the Refractive Index (µ = 1/ Sin C)
    • Total Internal Reflection
    • Total Internal Reflection in a Prism
    • Use of a Total Internal Reflecting Prism in Place of a Plane Mirror
    • Consequences of Total Internal Refraction
  • Electricity and Magnetism
  • Heat
  • Refraction Through a Lense
  • Modern Physics
  • Spectrum
    • Deviation Produced by a Triangular Prism
    • Colour in White Light with Their Wavelength and Frequency Range
    • Dispersion of Light Through Prism and Formation of Spectrum
    • Electromagnetic Spectrum
    • Different Radiation of Electromagnetic Spectrum
    • Gamma Rays
    • X rays
    • Ultraviolet Radiations
    • Visible Light
    • Infrared Radiations
    • Micro Waves
    • Radio Waves
    • Scattering of Light and Its Types
    • Applications of Scattering of Light
  • Sound
    • Sound
    • Difference Between the Sound and Light Waves
    • Reflection of Sound
    • Echoes
    • Determination of Speed of Sound by the Method of Echo
    • Use of Echoes
    • Natural Vibrations
    • Damped Vibrations
    • Forced Vibrations
    • Resonance
    • Demonstration of Resonance
    • Some Examples of Resonance
    • Properties of Sounds
    • Loudness and Intensity
    • Pitch (or shrillness) and frequency
    • Audibility and Range
    • Quality (Or Timbre) and Wave Form
    • Noise Pollution
    • Noise and Music
    • Sound (Numerical)
  • Current Electricity
  • Household Circuits
    • Transmission of Power from the Power Generating Station to the Consumer
    • Power Distribution to a House
    • House Wiring (Ring System)
    • Electric Fuse
    • Miniature Circuit Breaker (MCB)
    • Electric Switch
    • Circuits with Dual Control Switches (Staircase Wire)
    • Earthing (Grounding)
    • Three-pin Plug and Socket
    • Colour Coding of Live, Neutral, and Earth Wires
    • High Tension Wires
    • Precautions to Be Taken While Using Electricity
  • Electro Magnetism
  • Calorimetry
    • Heat and Its Unit
    • Temperatures
    • Factors Affecting the Quantity of Heat Absorbed to Increase the Temperature of a Body
    • Difference Between Heat and Temperature
    • Thermal Capacity (Heat Capacity)
    • Specific Heat Capacity
    • Relationship Between the Heat Capacity and Specfic Heat Capacity
    • Specific Heat Capacity of Some Common Substances
    • Calorimetry and Calorimeter
    • Principle of Method of Mixtures (or Principle of Calorimetry)
    • Natural Phenomena and Consequences of High Specific Heat Capacity of Water
    • Some Examples of High and Low Heat Capacity
    • Change of State of Matter
    • Melting and Freezing
    • Heating Curve of Ice During Melting
    • Change in Volume on Melting
    • Effect of Pressure on the Melting Point
    • Effect of Impurities on the Melting Point
    • Concept of Boiling (Vaporization)
    • Heating Curve for Water
    • Change in Volume on Boiling
    • Effect of Pressure on the Boiling Point
    • Effect of Impurities on the Boiling Point
    • Latent Heat and Specific Latent Heat
    • Specific Latent Heat of Fusion of Ice
    • Explanation of Latent Heat of Melting on the Basis of Kinetic Model
    • Natural Consequences of High Specific Latent Heat of Fusion of Ice
  • Radioactivity
    • Structure of the Atom and Nucleus
    • Atomic Model
    • Isotopes
    • Isobars
    • Isotones or Isoneutronic
    • Radioactivity
    • Radioactivity as Emission of Alpha, Beta, and Gamma Radiations
    • Properties of Alpha Particles
    • Properties of Beta Particles
    • Properties of Gamma Radiations
    • Changes Within the Nucleus in Alpha, Beta and Gamma Emission
    • Alpha Decay (Alpha Emission)
    • Beta Decay (Beta Emission)
    • Gamma Decay (Gamma Emission)
    • Uses of Radioactive Isotopes
    • Sources of Harmful Radiations
    • Hazards of Radioactive Substances and Radiation
    • Safety Precautions While Using Nuclear Energy
    • Background Radiations
    • Nuclear Energy
    • Nuclear Fission
    • Distinction Between the Radioactive Decay and Nuclear Fission
    • Nuclear Fusion
    • Distinction Between the Nuclear Fission and Nuclear Fusion


1.Effect of Change of Temperature:

Solid to liquid: On increasing the temperature of solids, the kinetic energy of the particles increases which overcomes the forces of attraction between the particles thereby solid gets converted to a liquid.

Melting: Change of solid state of a substance into liquid is called melting.

Melting point: The temperature at which a solid melts to become a liquid at the atmospheric pressure is called its melting point.

Melting point of ice is 0°c.


Liquid to gas: On heating a liquid like water, the kinetic energy of its particles increases as high as in a gas, thus causing the liquid to change to a gas.

Boiling: The change of a liquid substance into gas on heating is called boiling.

Boiling point: The temperature at which a liquid boils and changes rapidly into a gas at the atmospheric pressure is called its boiling point.

Boiling point if water is 100°C.


Gas to liquid: On cooling a gas like steam (or water vapour), the kinetic energy of its particles is lowered down, causing them to move slowly and bringing them closer, forming a liquid.

Condensation: The process, in which a gas, on cooling, turns into a liquid at a specific temperature is called condensation or liquefaction.


Liquid to solid:

When a liquid is cooled down by lowering its temperature, its particles lose the kinetic energy and come to a stationary position, causing the liquid to turn to solid.

Freezing: The change of a liquid substance into solid by lowering its temperature is called freezing.

Freezing point: The temperature at which the state of a substance changes from a liquid to a solid is called the freezing point of that substance.

Fusion: The process of melting, that is, change of solid state into liquid state is also known as fusion.

Latent heat: The heat energy that is required to change the state of a substance without causing any ruse in the temperature of the substance is called latent heat. Since, the heat energy is hidden in the bulk of the matter, it is called latent heat.

Latent heat of fusion: The heat energy required to convert 1 kilogram of a solid into liquid at atmospheric pressure, at its melting point, is known as the latent heat of fusion.

Latent heat of vaporisation: The heat energy required to convert 1 kilogram of liquid into gas, at atmospheric pressure, at its boiling point, is known as the latent heat of vaporisation.

Water vapour at 373 K have more energy than water at the same temperature because particles in steam have absorbed extra energy in the form of latent heat of vaporisation.

Sublimation: The change of state of a substance directly from a solid to gas or gas to solid, without changing into the liquid state, is called sublimation.


Can Matter Change its State?

We all know from our observation that water can exist in three states of matter–
• solid, as ice,
• liquid, as the familiar water, and
• gas, as water vapour.
What happens inside the matter during this change of state? What happens to the particles of matter during the change of states? How does this change of state take place? We need answers to these questions, isn’t it?


Pressure creates no effect on solids or liquids because both these states of matter are non-compressible. But if pressure is increased on solid it breaks.

But on the other hand application of pressure with reduced temperature can liquefy gases. For instance, during parties or stage shows you must have noticed smoke that spreads al around the stage. It is nothing but dry ice (solid carbon-dioxide). Solid carbon-dioxide is stored under high pressure that liquefies instantly as soon as the pressure is reduced to 1 atmospheric pressure.

If you would like to contribute notes or other learning material, please submit them using the button below. | Changes in states of matter

Next video

Changes in states of matter [00:26:37]


      Forgot password?
Use app×