Topics
Matter in Our Surroundings
- Matter
- Characteristics of Particles (Molecules) of Matter
- The Solid State
- The Liquid State
- The Gaseous State
- Plasma
- Bose-einstein Condensate
- Change of State of Matter
- Concept of Melting (Fusion)
- Concept of Boiling (Vaporization)
- Concept of Sublimation
- Concept of Freezing (Solidification)
- Concept of Condensation (Liquefaction)
- Concept of Desublimation (Deposition)
- Concept of Evaporation
Is Matter Around Us Pure
- Matter
- Mixture
- Concept of Solution
- Concentration of a Solution
- Concept of Suspension
- Concept of Colloidal Solution
- Evaporation Method
- Centrifugation Method
- Using a Separating Funnel Method
- Sublimation Method
- Chromatography Method
- Distillation Method
- Fractional Distillation Method
- Crystallisation Method
- Concept of Physical Changes
- Pure Substances
- Elements
- Concept of Compound
Atoms and Molecules
- Difference Between Atoms and Molecules
- Law of Conservation of Mass
- Law of Constant Proportions
- Atom
- The Modern Day Symbols of Atoms of Different Elements
- Concept of Atomic Mass
- Concept of Molecule
- Molecules of Elements
- Molecules of Compounds
- Concept of an Ion
- Writing Chemical Formulae
- Concept of Molecular Mass
- Concept of Molecular Mass
- Mole Concept
- Atoms and Molecules Numericals
Structure of the Atom
- Atom
- Charged Particles in Matter
- Structure of an Atom
- J. J. Thomson’s Model of an Atom
- Rutherford’S Model of an Atom
- Neil Bohr’s Model of Atom
- Concept of Proton
- Concept of Neutrons
- Concept of Electron
- Concept of Electrons Distributed in Different Orbits (Shells)
- Concept of Valency
- Atomic Number (Z)
- Concept of Mass Number
- Concept of Isotopes
- Concept of Isobars
- Atoms and Molecules Numericals
The Fundamental Unit of Life
- The Invention of the Microscope and the Discovery of Cell
- Prokaryotic and Eukaryotic Cell
- Osmosis and Osmotic Pressure
- Structure of a Cell
- Plasma Membrane
- Cell Wall - “Supporter and Protector”
- Nucleus - “Brain” of the Cell
- Cytoplasm - “Area of Movement”
- Endoplasmic Reticulum (ER)
- Golgi Apparatus
- Lysosome - “Suicidal Bag”
- Mitochondria - “Power House of the Cell”
- Plastids
- Non-living Substances Or Cell Inclusions
- Difference Between Plant Cell and Animal Cell
- Cell Inclusion
Tissues
Diversity in Living Organisms
Motion
- Concept of Motion
- Displacement
- Concept of Motion
- Motion Along a Straight Line
- Uniform Motion and Non-uniform Motion
- Measuring the Rate of Motion - Speed with Direction
- Rate of Change of Velocity
- Graphical Representation of Motion: Distance - Time Graphs
- Graphical Representation of Motion: Distance - Time Graphs
- Graphical Representation of Motion: Velocity - Time Graphs
- Equations of Motion by Graphical Method
- Derivation of Velocity - Time Relation by Graphical Method
- Derivation of Position - Time Relation by Graphical Method
- Derivation of Position - Velocity Relation by Graphical Method
- Uniform Circular Motion
- Motion (Numerical)
Force and Laws of Motion
- Force
- Force - Push Or Pull
- Forces Are Due to an Interaction
- Exploring Forces
- Force Can Change the State of Motion
- Force Can Change the Shape of an Object
- Concept of Contact Forces
- Concept of Non-contact Forces
- Balanced and Unbalanced Forces
- Newton's First Law of Motion
- Inertia and Mass
- Newton's Second Law of Motion
- Newton's Third Law of Motion
- Conservation of Momentum
- Force and Laws of Motion (Numerical)
Gravitation
- Concept of Gravitation
- Newton’s Universal Law of Gravitation
- Free Fall
- To Calculate the Value of G
- Motion of Objects Under the Influence of Gravitational Force of the Earth
- Concept of Mass
- Concept of Weight
- Pressure
- Buoyancy Force
- Pressure Exerted by Liquids and Gases
- Density of the Fluid
- Archimedes' Principle
- Relative Density
Work and Energy
- Work
- Work Done by a Constant Force
- Energy
- Different Forms of Energy
- Kinetic Energy
- Potential Energy
- The Potential Energy of an Object at a Height
- Work Done by a Energy
- Work Done by a Power
- Conversion of Energy from One Form to Another
- Law of Conservation of Energy
- Rate of Doing Work
- Energy
- Work and Energy (Numericals)
Sound
- Sound
- Production of Sound
- Propagation of Sound
- Sound Need a Medium to Travel
- Longitudinal Nature of Sound Waves
- Characteristics of a Sound Wave
- Speed of Sound
- Reflection of Sound
- Reflection of Sound – Echo
- Reflection of Sound – Reverberation
- Reflection of Sound
- Range of Hearing in Humans
- SONAR
- Structure of the Human Ear (Auditory Aspect Only)
- Sound (Numerical)
Why Do We Fall ill
- Health and Its Failure
- The Significance of ‘Health'
- Personal and Community Issues Both Matter for Health
- Distinctions Between ‘Healthy’ and ‘Disease-free’
- Identification of Disease
- Categories of Diseases
- Chronic Diseases and Poor Health
- Causes of Disease
- Infectious and Non-infectious Causes
- Categories of Diseases
- Infectious Agents
- Diseases Caused by Bacteria
- Diseases Caused by Parasitic Worms: Taeniasis
- Diseases Caused by Protozoa
- Modes of Transmission of Diseases (Air, Water, Food, Insects)
- Organ-specific and Tissue-specific Manifestations of Disease
- Principles of Prevention of Diseases
- Principles of Treatment of Diseases
Our Environment
- Introduction of Our Environment
- The Breath of Life - Air
- The Role of the Atmosphere in Climate Control
- Movements of Air (Winds) and Its Role in Bringing Rains Across India
- Water - A Wonder Liquid
- Concept of Water Pollution
- Mineral Riches in the Soil
- Biogeochemical Cycle
- The Water-cycle
- The Nitrogen-cycle
- The Carbon Cycle
- The Oxygen-cycle
- Ozone Layer Depletion
Improvement in Food Resources
notes
Types of disease:
Acute Disease:
- Acute disease lasts for only a short period of time.
- It is caused in due course time.
- It does not cause major effect on general health.
- Example: cough, dysentry.
Chronic disease:
- Chronic diseases last for a long period of time
- It is caused in due course of time.
- It causes major effect on general health.
Example: Elephantiasis, heart disease, tuberculosis.
notes
Difference between Infectious and Non-infectious Diseases:
Infectious or Communicable Diseases:
- They are caused by attack of pathogens.
- The diseases brought about by exitinsic or external factors.
- Infectious diseases can pass from diseased person to a heathly person.
- Transmission of infection occurs through direct contact or some medium (air, water, vectors).
- Community hygiene can reduce the incidence of infections diseases
- Example: Cholera, Tuberculosis (TB), Pneumonia, Chickenpox.
Non-Infectious or Communicable Diseases:
- They are not caused by pathogens.
- The diseases are mostly brought by intrinsic or internal factors.
- Non-infectious diseases cannot pass from one person to another.
- Transmission is absent, However hereditary diseases are transmitted from parent to offspring.
- Community hygiene is ineffective in reducing the incidence of non-infectious diseases.
- Example: High blood pressure, Heart, disease, Cancer.
If you would like to contribute notes or other learning material, please submit them using the button below.
Shaalaa.com | Acute and Chronic Diseases
to track your progress
Related QuestionsVIEW ALL [25]
Advertisement Remove all ads